cos(z)=2 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: cos(z)=2
Решение
Подробное решение
Дано уравнение
$$\cos{\left(z \right)} = 2$$
- это простейшее тригонометрическое ур-ние
Т.к. правая часть ур-ния
по модулю =
True
но cos
не может быть больше 1 или меньше -1
зн. решения у соотв. ур-ния не существует. z1 = 2*pi - I*im(acos(2))
$$z_{1} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}$$
z2 = I*im(acos(2)) + re(acos(2))
$$z_{2} = \operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}$$
Сумма и произведение корней
[src]0 + 2*pi - I*im(acos(2)) + I*im(acos(2)) + re(acos(2))
$$\left(0 + \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)$$
$$\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + 2 \pi$$
1*(2*pi - I*im(acos(2)))*(I*im(acos(2)) + re(acos(2)))
$$1 \cdot \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)$$
(2*pi - I*im(acos(2)))*(I*im(acos(2)) + re(acos(2)))
$$\left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(2 \right)}\right)}\right)$$
z1 = 6.28318530717959 - 1.31695789692482*i