z1 = -re(acos(-2)) + 2*pi - I*im(acos(-2))
$$z_{1} = - \operatorname{re}{\left(\operatorname{acos}{\left(-2 \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(-2 \right)}\right)}$$
/ / ___\\ / / ___\\
z2 = - re\acos\1 - I*\/ 3 // + 2*pi - I*im\acos\1 - I*\/ 3 //
$$z_{2} = - \operatorname{re}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)}$$
/ / ___\\ / / ___\\
z3 = - re\acos\1 + I*\/ 3 // + 2*pi - I*im\acos\1 + I*\/ 3 //
$$z_{3} = - \operatorname{re}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)}$$
z4 = I*im(acos(-2)) + re(acos(-2))
$$z_{4} = \operatorname{re}{\left(\operatorname{acos}{\left(-2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-2 \right)}\right)}$$
/ / ___\\ / / ___\\
z5 = I*im\acos\1 - I*\/ 3 // + re\acos\1 - I*\/ 3 //
$$z_{5} = \operatorname{re}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)}$$
/ / ___\\ / / ___\\
z6 = I*im\acos\1 + I*\/ 3 // + re\acos\1 + I*\/ 3 //
$$z_{6} = \operatorname{re}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)}$$
Сумма и произведение корней
[src] / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\
-re(acos(-2)) + 2*pi - I*im(acos(-2)) + - re\acos\1 - I*\/ 3 // + 2*pi - I*im\acos\1 - I*\/ 3 // + - re\acos\1 + I*\/ 3 // + 2*pi - I*im\acos\1 + I*\/ 3 // + I*im(acos(-2)) + re(acos(-2)) + I*im\acos\1 - I*\/ 3 // + re\acos\1 - I*\/ 3 // + I*im\acos\1 + I*\/ 3 // + re\acos\1 + I*\/ 3 //
$$\left(\operatorname{re}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)}\right) + \left(\left(\left(\operatorname{re}{\left(\operatorname{acos}{\left(-2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-2 \right)}\right)}\right) + \left(\left(\left(- \operatorname{re}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{acos}{\left(-2 \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(-2 \right)}\right)}\right)\right) + \left(- \operatorname{re}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)}\right)\right)\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)}\right)\right)$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
(-re(acos(-2)) + 2*pi - I*im(acos(-2)))*\- re\acos\1 - I*\/ 3 // + 2*pi - I*im\acos\1 - I*\/ 3 ///*\- re\acos\1 + I*\/ 3 // + 2*pi - I*im\acos\1 + I*\/ 3 ///*(I*im(acos(-2)) + re(acos(-2)))*\I*im\acos\1 - I*\/ 3 // + re\acos\1 - I*\/ 3 ///*\I*im\acos\1 + I*\/ 3 // + re\acos\1 + I*\/ 3 ///
$$\left(- \operatorname{re}{\left(\operatorname{acos}{\left(-2 \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(-2 \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)} + 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(-2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)}\right)$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
-(I*im(acos(-2)) + re(acos(-2)))*\I*im\acos\1 + I*\/ 3 // + re\acos\1 + I*\/ 3 ///*\I*im\acos\1 - I*\/ 3 // + re\acos\1 - I*\/ 3 ///*(-2*pi + I*im(acos(-2)) + re(acos(-2)))*\-2*pi + I*im\acos\1 + I*\/ 3 // + re\acos\1 + I*\/ 3 ///*\-2*pi + I*im\acos\1 - I*\/ 3 // + re\acos\1 - I*\/ 3 ///
$$- \left(\operatorname{re}{\left(\operatorname{acos}{\left(-2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)}\right) \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(-2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(-2 \right)}\right)}\right) \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 - \sqrt{3} i \right)}\right)}\right) \left(- 2 \pi + \operatorname{re}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(1 + \sqrt{3} i \right)}\right)}\right)$$
z1 = 3.14159265358979 + 1.31695789692482*i
z2 = 5.18684008737177 - 1.41973494618919*i
z3 = 5.18684008737177 + 1.41973494618919*i
z4 = 3.14159265358979 - 1.31695789692482*i
z5 = 1.09634521980782 + 1.41973494618919*i
z6 = 1.09634521980782 - 1.41973494618919*i