sqrt(x-6)=3 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sqrt(x-6)=3

    Решение

    Вы ввели [src]
      _______    
    \/ x - 6  = 3
    x6=3\sqrt{x - 6} = 3
    Подробное решение
    Дано уравнение
    x6=3\sqrt{x - 6} = 3
    Т.к. степень в ур-нии равна = 1/2 - не содержит чётного числа в числителе, то
    ур-ние будет иметь один действительный корень.
    Возведём обе части ур-ния в(о) 2-ую степень:
    Получим:
    (x6)2=32\left(\sqrt{x - 6}\right)^{2} = 3^{2}
    или
    x6=9x - 6 = 9
    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    x=15x = 15
    Получим ответ: x = 15

    Тогда, окончательный ответ:
    x1=15x_{1} = 15
    График
    7.537.510.012.515.017.520.022.525.027.530.032.535.005
    Быстрый ответ [src]
    x1 = 15
    x1=15x_{1} = 15
    Численный ответ [src]
    x1 = 15.0
    График
    sqrt(x-6)=3 (уравнение) /media/krcore-image-pods/hash/equation/b/70/d34c2a8c41b37f6e0212bb658db66.png