log6(5-x)=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: log6(5-x)=0

    Решение

    Вы ввели [src]
    log(5 - x)    
    ---------- = 0
      log(6)      
    log(5x)log(6)=0\frac{\log{\left(5 - x \right)}}{\log{\left(6 \right)}} = 0
    Подробное решение
    Дано уравнение
    log(5x)log(6)=0\frac{\log{\left(5 - x \right)}}{\log{\left(6 \right)}} = 0
    log(5x)log(6)=0\frac{\log{\left(5 - x \right)}}{\log{\left(6 \right)}} = 0
    Разделим обе части ур-ния на множитель при log =1/log(6)
    log(5x)=0\log{\left(5 - x \right)} = 0
    Это уравнение вида:
    log(v)=p

    По определению log
    v=e^p

    тогда
    5x=e01log(6)5 - x = e^{\frac{0}{\frac{1}{\log{\left(6 \right)}}}}
    упрощаем
    5x=15 - x = 1
    x=4- x = -4
    x=4x = 4
    График
    -7.5-5.0-2.50.02.55.07.510.012.515.017.520.05-5
    Быстрый ответ [src]
    x1 = 4
    x1=4x_{1} = 4
    Сумма и произведение корней [src]
    сумма
    0 + 4
    0+40 + 4
    =
    4
    44
    произведение
    1*4
    141 \cdot 4
    =
    4
    44
    Численный ответ [src]
    x1 = 4.0
    График
    log6(5-x)=0 (уравнение) /media/krcore-image-pods/hash/equation/7/53/25577f028ab8bf5c0b18073778d22.png