Решите уравнение log3(-2x-7)=3 (логарифм от 3(минус 2 х минус 7) равно 3) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

log3(-2x-7)=3 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: log3(-2x-7)=3

    Решение

    Вы ввели [src]
    log(-2*x - 7)    
    ------------- = 3
        log(3)       
    $$\frac{\log{\left(- 2 x - 7 \right)}}{\log{\left(3 \right)}} = 3$$
    Подробное решение
    Дано уравнение
    $$\frac{\log{\left(- 2 x - 7 \right)}}{\log{\left(3 \right)}} = 3$$
    $$\frac{\log{\left(- 2 x - 7 \right)}}{\log{\left(3 \right)}} = 3$$
    Разделим обе части ур-ния на множитель при log =1/log(3)
    $$\log{\left(- 2 x - 7 \right)} = 3 \log{\left(3 \right)}$$
    Это уравнение вида:
    log(v)=p

    По определению log
    v=e^p

    тогда
    $$- 2 x - 7 = e^{\frac{3}{\frac{1}{\log{\left(3 \right)}}}}$$
    упрощаем
    $$- 2 x - 7 = 27$$
    $$- 2 x = 34$$
    $$x = -17$$
    График
    Быстрый ответ [src]
    x1 = -17
    $$x_{1} = -17$$
    Сумма и произведение корней [src]
    сумма
    0 - 17
    $$-17 + 0$$
    =
    -17
    $$-17$$
    произведение
    1*-17
    $$1 \left(-17\right)$$
    =
    -17
    $$-17$$
    Численный ответ [src]
    x1 = -17.0
    График
    log3(-2x-7)=3 (уравнение) /media/krcore-image-pods/hash/equation/b/bb/93dd8c94358c2ce0b3d9b43a4ceea.png