log(x)=1/k (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: log(x)=1/k

    Решение

    Вы ввели [src]
             1
    log(x) = -
             k
    log(x)=1k\log{\left(x \right)} = \frac{1}{k}
    Подробное решение
    Дано уравнение
    log(x)=1k\log{\left(x \right)} = \frac{1}{k}
    log(x)=1k\log{\left(x \right)} = \frac{1}{k}
    Это уравнение вида:
    log(v)=p

    По определению log
    v=e^p

    тогда
    x=e1kx = e^{\frac{1}{k}}
    упрощаем
    x=e1kx = e^{\frac{1}{k}}
    График
    Быстрый ответ [src]
                                    re(k)                re(k)                          
                               ---------------      ---------------                     
                                 2        2           2        2                        
            /     im(k)     \  im (k) + re (k)      im (k) + re (k)    /     im(k)     \
    x1 = cos|---------------|*e                - I*e               *sin|---------------|
            |  2        2   |                                          |  2        2   |
            \im (k) + re (k)/                                          \im (k) + re (k)/
    x1=iere(k)(re(k))2+(im(k))2sin(im(k)(re(k))2+(im(k))2)+ere(k)(re(k))2+(im(k))2cos(im(k)(re(k))2+(im(k))2)x_{1} = - i e^{\frac{\operatorname{re}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}}} \sin{\left(\frac{\operatorname{im}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}} \right)} + e^{\frac{\operatorname{re}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}}} \cos{\left(\frac{\operatorname{im}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}} \right)}
    Сумма и произведение корней [src]
    сумма
                               re(k)                re(k)                          
                          ---------------      ---------------                     
                            2        2           2        2                        
       /     im(k)     \  im (k) + re (k)      im (k) + re (k)    /     im(k)     \
    cos|---------------|*e                - I*e               *sin|---------------|
       |  2        2   |                                          |  2        2   |
       \im (k) + re (k)/                                          \im (k) + re (k)/
    iere(k)(re(k))2+(im(k))2sin(im(k)(re(k))2+(im(k))2)+ere(k)(re(k))2+(im(k))2cos(im(k)(re(k))2+(im(k))2)- i e^{\frac{\operatorname{re}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}}} \sin{\left(\frac{\operatorname{im}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}} \right)} + e^{\frac{\operatorname{re}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}}} \cos{\left(\frac{\operatorname{im}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}} \right)}
    =
                               re(k)                re(k)                          
                          ---------------      ---------------                     
                            2        2           2        2                        
       /     im(k)     \  im (k) + re (k)      im (k) + re (k)    /     im(k)     \
    cos|---------------|*e                - I*e               *sin|---------------|
       |  2        2   |                                          |  2        2   |
       \im (k) + re (k)/                                          \im (k) + re (k)/
    iere(k)(re(k))2+(im(k))2sin(im(k)(re(k))2+(im(k))2)+ere(k)(re(k))2+(im(k))2cos(im(k)(re(k))2+(im(k))2)- i e^{\frac{\operatorname{re}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}}} \sin{\left(\frac{\operatorname{im}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}} \right)} + e^{\frac{\operatorname{re}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}}} \cos{\left(\frac{\operatorname{im}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}} \right)}
    произведение
                               re(k)                re(k)                          
                          ---------------      ---------------                     
                            2        2           2        2                        
       /     im(k)     \  im (k) + re (k)      im (k) + re (k)    /     im(k)     \
    cos|---------------|*e                - I*e               *sin|---------------|
       |  2        2   |                                          |  2        2   |
       \im (k) + re (k)/                                          \im (k) + re (k)/
    iere(k)(re(k))2+(im(k))2sin(im(k)(re(k))2+(im(k))2)+ere(k)(re(k))2+(im(k))2cos(im(k)(re(k))2+(im(k))2)- i e^{\frac{\operatorname{re}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}}} \sin{\left(\frac{\operatorname{im}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}} \right)} + e^{\frac{\operatorname{re}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}}} \cos{\left(\frac{\operatorname{im}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}} \right)}
    =
          re(k)            I*im(k)    
     --------------- - ---------------
       2        2        2        2   
     im (k) + re (k)   im (k) + re (k)
    e                                 
    ere(k)(re(k))2+(im(k))2iim(k)(re(k))2+(im(k))2e^{\frac{\operatorname{re}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}} - \frac{i \operatorname{im}{\left(k\right)}}{\left(\operatorname{re}{\left(k\right)}\right)^{2} + \left(\operatorname{im}{\left(k\right)}\right)^{2}}}