-x^2=-16 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: -x^2=-16

    Решение

    Вы ввели [src]
      2      
    -x  = -16
    x2=16- x^{2} = -16
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    x2=16- x^{2} = -16
    в
    16x2=016 - x^{2} = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = -1
    b=0b = 0
    c=16c = 16
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (-1) * (16) = 64

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=4x_{1} = -4
    Упростить
    x2=4x_{2} = 4
    Упростить
    График
    05-20-15-10-5101520-200200
    Быстрый ответ [src]
    x1 = -4
    x1=4x_{1} = -4
    x2 = 4
    x2=4x_{2} = 4
    Сумма и произведение корней [src]
    сумма
    0 - 4 + 4
    (4+0)+4\left(-4 + 0\right) + 4
    =
    0
    00
    произведение
    1*-4*4
    1(4)41 \left(-4\right) 4
    =
    -16
    16-16
    Теорема Виета
    перепишем уравнение
    x2=16- x^{2} = -16
    из
    ax2+bx+c=0a x^{2} + b x + c = 0
    как приведённое квадратное уравнение
    x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
    x216=0x^{2} - 16 = 0
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=0p = 0
    q=caq = \frac{c}{a}
    q=16q = -16
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=0x_{1} + x_{2} = 0
    x1x2=16x_{1} x_{2} = -16
    Численный ответ [src]
    x1 = 4.0
    x2 = -4.0
    График
    -x^2=-16 (уравнение) /media/krcore-image-pods/hash/equation/b/91/43bcfe6c5a21a2b7d7e234f27e2f3.png