(|2*x-3|)=1 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (|2*x-3|)=1

    Решение

    Вы ввели [src]
    |2*x - 3| = 1
    2x3=1\left|{2 x - 3}\right| = 1
    Подробное решение
    Для каждого выражения под модулем в ур-нии
    допускаем случаи, когда соотв. выражение ">= 0" или "< 0",
    решаем получившиеся ур-ния.

    1.
    2x302 x - 3 \geq 0
    или
    32xx<\frac{3}{2} \leq x \wedge x < \infty
    получаем ур-ние
    2x31=02 x - 3 - 1 = 0
    упрощаем, получаем
    2x4=02 x - 4 = 0
    решение на этом интервале:
    x1=2x_{1} = 2

    2.
    2x3<02 x - 3 < 0
    или
    <xx<32-\infty < x \wedge x < \frac{3}{2}
    получаем ур-ние
    2x+31=0- 2 x + 3 - 1 = 0
    упрощаем, получаем
    2x+2=0- 2 x + 2 = 0
    решение на этом интервале:
    x2=1x_{2} = 1


    Тогда, окончательный ответ:
    x1=2x_{1} = 2
    x2=1x_{2} = 1
    График
    -12.5-10.0-7.5-5.0-2.50.02.55.07.510.012.515.017.5025
    Быстрый ответ [src]
    x1 = 1
    x1=1x_{1} = 1
    x2 = 2
    x2=2x_{2} = 2
    Численный ответ [src]
    x1 = 1.00000000000000
    x2 = 2.00000000000000
    График
    (|2*x-3|)=1 (уравнение) /media/krcore-image-pods/46a2/8674/0d7b/8072/im.png