|1-x|=2 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: |1-x|=2
Решение
Подробное решение
Для каждого выражения под модулем в ур-нии
допускаем случаи, когда соотв. выражение ">= 0" или "< 0",
решаем получившиеся ур-ния.
1.
$$x - 1 \geq 0$$
или
$$1 \leq x \wedge x < \infty$$
получаем ур-ние
$$\left(x - 1\right) - 2 = 0$$
упрощаем, получаем
$$x - 3 = 0$$
решение на этом интервале:
$$x_{1} = 3$$
2.
$$x - 1 < 0$$
или
$$-\infty < x \wedge x < 1$$
получаем ур-ние
$$\left(1 - x\right) - 2 = 0$$
упрощаем, получаем
$$- x - 1 = 0$$
решение на этом интервале:
$$x_{2} = -1$$
Тогда, окончательный ответ:
$$x_{1} = 3$$
$$x_{2} = -1$$