Подробное решение
Для каждого выражения под модулем в ур-нии
допускаем случаи, когда соотв. выражение ">= 0" или "< 0",
решаем получившиеся ур-ния.
1.
$$x - 1 \geq 0$$
или
$$1 \leq x \wedge x < \infty$$
получаем ур-ние
$$- a + \left(x - 1\right) = 0$$
упрощаем, получаем
$$- a + x - 1 = 0$$
решение на этом интервале:
$$x_{1} = a + 1$$
2.
$$x - 1 < 0$$
или
$$-\infty < x \wedge x < 1$$
получаем ур-ние
$$- a + \left(1 - x\right) = 0$$
упрощаем, получаем
$$- a - x + 1 = 0$$
решение на этом интервале:
$$x_{2} = 1 - a$$
Тогда, окончательный ответ:
$$x_{1} = a + 1$$
$$x_{2} = 1 - a$$
//1 - a for a > 0\ //1 - a for a > 0\
x1 = I*im|< | + re|< |
\\ nan otherwise/ \\ nan otherwise/
$$x_{1} = \operatorname{re}{\left(\begin{cases} 1 - a & \text{for}\: a > 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)} + i \operatorname{im}{\left(\begin{cases} 1 - a & \text{for}\: a > 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)}$$
//1 + a for a >= 0\ //1 + a for a >= 0\
x2 = I*im|< | + re|< |
\\ nan otherwise / \\ nan otherwise /
$$x_{2} = \operatorname{re}{\left(\begin{cases} a + 1 & \text{for}\: a \geq 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)} + i \operatorname{im}{\left(\begin{cases} a + 1 & \text{for}\: a \geq 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)}$$
Сумма и произведение корней
[src] //1 - a for a > 0\ //1 - a for a > 0\ //1 + a for a >= 0\ //1 + a for a >= 0\
I*im|< | + re|< | + I*im|< | + re|< |
\\ nan otherwise/ \\ nan otherwise/ \\ nan otherwise / \\ nan otherwise /
$$\left(\operatorname{re}{\left(\begin{cases} 1 - a & \text{for}\: a > 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)} + i \operatorname{im}{\left(\begin{cases} 1 - a & \text{for}\: a > 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)}\right) + \left(\operatorname{re}{\left(\begin{cases} a + 1 & \text{for}\: a \geq 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)} + i \operatorname{im}{\left(\begin{cases} a + 1 & \text{for}\: a \geq 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)}\right)$$
//1 + a for a >= 0\ //1 - a for a > 0\ //1 + a for a >= 0\ //1 - a for a > 0\
I*im|< | + I*im|< | + re|< | + re|< |
\\ nan otherwise / \\ nan otherwise/ \\ nan otherwise / \\ nan otherwise/
$$\operatorname{re}{\left(\begin{cases} 1 - a & \text{for}\: a > 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)} + \operatorname{re}{\left(\begin{cases} a + 1 & \text{for}\: a \geq 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)} + i \operatorname{im}{\left(\begin{cases} 1 - a & \text{for}\: a > 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)} + i \operatorname{im}{\left(\begin{cases} a + 1 & \text{for}\: a \geq 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)}$$
/ //1 - a for a > 0\ //1 - a for a > 0\\ / //1 + a for a >= 0\ //1 + a for a >= 0\\
|I*im|< | + re|< ||*|I*im|< | + re|< ||
\ \\ nan otherwise/ \\ nan otherwise// \ \\ nan otherwise / \\ nan otherwise //
$$\left(\operatorname{re}{\left(\begin{cases} 1 - a & \text{for}\: a > 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)} + i \operatorname{im}{\left(\begin{cases} 1 - a & \text{for}\: a > 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)}\right) \left(\operatorname{re}{\left(\begin{cases} a + 1 & \text{for}\: a \geq 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)} + i \operatorname{im}{\left(\begin{cases} a + 1 & \text{for}\: a \geq 0 \\\text{NaN} & \text{otherwise} \end{cases}\right)}\right)$$
/-(1 + I*im(a) + re(a))*(-1 + I*im(a) + re(a)) for a > 0
<
\ nan otherwise
$$\begin{cases} - \left(\operatorname{re}{\left(a\right)} + i \operatorname{im}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(a\right)} + i \operatorname{im}{\left(a\right)} + 1\right) & \text{for}\: a > 0 \\\text{NaN} & \text{otherwise} \end{cases}$$