(|x-5|)=1 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (|x-5|)=1

    Решение

    Вы ввели [src]
    |x - 5| = 1
    x5=1\left|{x - 5}\right| = 1
    Подробное решение
    Для каждого выражения под модулем в ур-нии
    допускаем случаи, когда соотв. выражение ">= 0" или "< 0",
    решаем получившиеся ур-ния.

    1.
    x50x - 5 \geq 0
    или
    5xx<5 \leq x \wedge x < \infty
    получаем ур-ние
    (x5)1=0\left(x - 5\right) - 1 = 0
    упрощаем, получаем
    x6=0x - 6 = 0
    решение на этом интервале:
    x1=6x_{1} = 6

    2.
    x5<0x - 5 < 0
    или
    <xx<5-\infty < x \wedge x < 5
    получаем ур-ние
    (5x)1=0\left(5 - x\right) - 1 = 0
    упрощаем, получаем
    4x=04 - x = 0
    решение на этом интервале:
    x2=4x_{2} = 4


    Тогда, окончательный ответ:
    x1=6x_{1} = 6
    x2=4x_{2} = 4
    График
    05-5101520020
    Быстрый ответ [src]
    x1 = 4
    x1=4x_{1} = 4
    x2 = 6
    x2=6x_{2} = 6
    Сумма и произведение корней [src]
    сумма
    0 + 4 + 6
    (0+4)+6\left(0 + 4\right) + 6
    =
    10
    1010
    произведение
    1*4*6
    1461 \cdot 4 \cdot 6
    =
    24
    2424
    Численный ответ [src]
    x1 = 6.0
    x2 = 4.0
    График
    (|x-5|)=1 (уравнение) /media/krcore-image-pods/hash/equation/0/b0/1de87bc9c78694c879e9072f95960.png