Решите уравнение ||x|+2|=6 (модуль от | х | плюс 2| равно 6) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

||x|+2|=6 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: ||x|+2|=6

    Решение

    Вы ввели [src]
    ||x| + 2| = 6
    $$\left|{\left|{x}\right| + 2}\right| = 6$$
    Подробное решение
    Для каждого выражения под модулем в ур-нии
    допускаем случаи, когда соотв. выражение ">= 0" или "< 0",
    решаем получившиеся ур-ния.

    1.
    $$x \geq 0$$
    или
    $$0 \leq x \wedge x < \infty$$
    получаем ур-ние
    $$x - 4 = 0$$
    упрощаем, получаем
    $$x - 4 = 0$$
    решение на этом интервале:
    $$x_{1} = 4$$

    2.
    $$x < 0$$
    или
    $$-\infty < x \wedge x < 0$$
    получаем ур-ние
    $$- x - 4 = 0$$
    упрощаем, получаем
    $$- x - 4 = 0$$
    решение на этом интервале:
    $$x_{2} = -4$$


    Тогда, окончательный ответ:
    $$x_{1} = 4$$
    $$x_{2} = -4$$
    График
    Быстрый ответ [src]
    x1 = -4
    $$x_{1} = -4$$
    x2 = 4
    $$x_{2} = 4$$
    Сумма и произведение корней [src]
    сумма
    0 - 4 + 4
    $$\left(-4 + 0\right) + 4$$
    =
    0
    $$0$$
    произведение
    1*-4*4
    $$1 \left(-4\right) 4$$
    =
    -16
    $$-16$$
    Численный ответ [src]
    x1 = 4.0
    x2 = -4.0
    График
    ||x|+2|=6 (уравнение) /media/krcore-image-pods/hash/equation/9/cf/b590b3ef441621a158cb8838eff11.png