0,6x+2x^2=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 0,6x+2x^2=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 2 a = 2 a = 2 b = 3 5 b = \frac{3}{5} b = 5 3 c = 0 c = 0 c = 0 , тоD = b^2 - 4 * a * c = (3/5)^2 - 4 * (2) * (0) = 9/25 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 0 x_{1} = 0 x 1 = 0 Упростить x 2 = − 3 10 x_{2} = - \frac{3}{10} x 2 = − 10 3 Упростить
График
-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 15.0 10.0 12.5 -250 250
x 1 = − 3 10 x_{1} = - \frac{3}{10} x 1 = − 10 3
Сумма и произведение корней
[src] ( − 3 10 + 0 ) + 0 \left(- \frac{3}{10} + 0\right) + 0 ( − 10 3 + 0 ) + 0 1 ( − 3 10 ) 0 1 \left(- \frac{3}{10}\right) 0 1 ( − 10 3 ) 0
Теорема Виета
перепишем уравнение2 x 2 + 3 x 5 = 0 2 x^{2} + \frac{3 x}{5} = 0 2 x 2 + 5 3 x = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + 3 x 10 = 0 x^{2} + \frac{3 x}{10} = 0 x 2 + 10 3 x = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 3 10 p = \frac{3}{10} p = 10 3 q = c a q = \frac{c}{a} q = a c q = 0 q = 0 q = 0 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 3 10 x_{1} + x_{2} = - \frac{3}{10} x 1 + x 2 = − 10 3 x 1 x 2 = 0 x_{1} x_{2} = 0 x 1 x 2 = 0