(0.25)^х*1.5*(0.5)^х-1=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: (0.25)^х*1.5*(0.5)^х-1=0
Решение
Подробное решение
Дано уравнение:( − 1 ) 1 + ( 1 4 ) x 3 2 ( 1 2 ) x = 0 \left(-1\right) 1 + \left(\frac{1}{4}\right)^{x} \frac{3}{2} \left(\frac{1}{2}\right)^{x} = 0 ( − 1 ) 1 + ( 4 1 ) x 2 3 ( 2 1 ) x = 0 или( ( − 1 ) 1 + ( 1 4 ) x 3 2 ( 1 2 ) x ) + 0 = 0 \left(\left(-1\right) 1 + \left(\frac{1}{4}\right)^{x} \frac{3}{2} \left(\frac{1}{2}\right)^{x}\right) + 0 = 0 ( ( − 1 ) 1 + ( 4 1 ) x 2 3 ( 2 1 ) x ) + 0 = 0 или3 ⋅ 8 − x 2 = 1 \frac{3 \cdot 8^{- x}}{2} = 1 2 3 ⋅ 8 − x = 1 или( 1 8 ) x = 2 3 \left(\frac{1}{8}\right)^{x} = \frac{2}{3} ( 8 1 ) x = 3 2 - это простейшее показательное ур-ние Сделаем заменуv = ( 1 8 ) x v = \left(\frac{1}{8}\right)^{x} v = ( 8 1 ) x получимv − 2 3 = 0 v - \frac{2}{3} = 0 v − 3 2 = 0 илиv − 2 3 = 0 v - \frac{2}{3} = 0 v − 3 2 = 0 Переносим свободные слагаемые (без v) из левой части в правую, получим:v = 2 3 v = \frac{2}{3} v = 3 2 Получим ответ: v = 2/3 делаем обратную замену( 1 8 ) x = v \left(\frac{1}{8}\right)^{x} = v ( 8 1 ) x = v илиx = − log ( v ) log ( 8 ) x = - \frac{\log{\left(v \right)}}{\log{\left(8 \right)}} x = − log ( 8 ) log ( v ) Тогда, окончательный ответx 1 = log ( 2 3 ) log ( 1 8 ) = − 1 3 + log ( 3 ) 3 log ( 2 ) x_{1} = \frac{\log{\left(\frac{2}{3} \right)}}{\log{\left(\frac{1}{8} \right)}} = - \frac{1}{3} + \frac{\log{\left(3 \right)}}{3 \log{\left(2 \right)}} x 1 = log ( 8 1 ) log ( 3 2 ) = − 3 1 + 3 log ( 2 ) log ( 3 )
График
-12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 -500000000 1000000000
-log(2) + log(3)
x1 = ----------------
3*log(2) x 1 = − log ( 2 ) + log ( 3 ) 3 log ( 2 ) x_{1} = \frac{- \log{\left(2 \right)} + \log{\left(3 \right)}}{3 \log{\left(2 \right)}} x 1 = 3 log ( 2 ) − log ( 2 ) + log ( 3 ) log(3/2) 2*pi*I
x2 = -------- - --------
3*log(2) 3*log(2) x 2 = log ( 3 2 ) 3 log ( 2 ) − 2 i π 3 log ( 2 ) x_{2} = \frac{\log{\left(\frac{3}{2} \right)}}{3 \log{\left(2 \right)}} - \frac{2 i \pi}{3 \log{\left(2 \right)}} x 2 = 3 log ( 2 ) log ( 2 3 ) − 3 log ( 2 ) 2 iπ log(3/2) 2*pi*I
x3 = -------- + --------
3*log(2) 3*log(2) x 3 = log ( 3 2 ) 3 log ( 2 ) + 2 i π 3 log ( 2 ) x_{3} = \frac{\log{\left(\frac{3}{2} \right)}}{3 \log{\left(2 \right)}} + \frac{2 i \pi}{3 \log{\left(2 \right)}} x 3 = 3 log ( 2 ) log ( 2 3 ) + 3 log ( 2 ) 2 iπ
Сумма и произведение корней
[src] -log(2) + log(3) log(3/2) 2*pi*I log(3/2) 2*pi*I
0 + ---------------- + -------- - -------- + -------- + --------
3*log(2) 3*log(2) 3*log(2) 3*log(2) 3*log(2) ( ( 0 + − log ( 2 ) + log ( 3 ) 3 log ( 2 ) ) + ( log ( 3 2 ) 3 log ( 2 ) − 2 i π 3 log ( 2 ) ) ) + ( log ( 3 2 ) 3 log ( 2 ) + 2 i π 3 log ( 2 ) ) \left(\left(0 + \frac{- \log{\left(2 \right)} + \log{\left(3 \right)}}{3 \log{\left(2 \right)}}\right) + \left(\frac{\log{\left(\frac{3}{2} \right)}}{3 \log{\left(2 \right)}} - \frac{2 i \pi}{3 \log{\left(2 \right)}}\right)\right) + \left(\frac{\log{\left(\frac{3}{2} \right)}}{3 \log{\left(2 \right)}} + \frac{2 i \pi}{3 \log{\left(2 \right)}}\right) ( ( 0 + 3 log ( 2 ) − log ( 2 ) + log ( 3 ) ) + ( 3 log ( 2 ) log ( 2 3 ) − 3 log ( 2 ) 2 iπ ) ) + ( 3 log ( 2 ) log ( 2 3 ) + 3 log ( 2 ) 2 iπ ) -log(2) + log(3) 2*log(3/2)
---------------- + ----------
3*log(2) 3*log(2) − log ( 2 ) + log ( 3 ) 3 log ( 2 ) + 2 log ( 3 2 ) 3 log ( 2 ) \frac{- \log{\left(2 \right)} + \log{\left(3 \right)}}{3 \log{\left(2 \right)}} + \frac{2 \log{\left(\frac{3}{2} \right)}}{3 \log{\left(2 \right)}} 3 log ( 2 ) − log ( 2 ) + log ( 3 ) + 3 log ( 2 ) 2 log ( 2 3 ) -log(2) + log(3) /log(3/2) 2*pi*I \ /log(3/2) 2*pi*I \
1*----------------*|-------- - --------|*|-------- + --------|
3*log(2) \3*log(2) 3*log(2)/ \3*log(2) 3*log(2)/ 1 − log ( 2 ) + log ( 3 ) 3 log ( 2 ) ( log ( 3 2 ) 3 log ( 2 ) − 2 i π 3 log ( 2 ) ) ( log ( 3 2 ) 3 log ( 2 ) + 2 i π 3 log ( 2 ) ) 1 \frac{- \log{\left(2 \right)} + \log{\left(3 \right)}}{3 \log{\left(2 \right)}} \left(\frac{\log{\left(\frac{3}{2} \right)}}{3 \log{\left(2 \right)}} - \frac{2 i \pi}{3 \log{\left(2 \right)}}\right) \left(\frac{\log{\left(\frac{3}{2} \right)}}{3 \log{\left(2 \right)}} + \frac{2 i \pi}{3 \log{\left(2 \right)}}\right) 1 3 log ( 2 ) − log ( 2 ) + log ( 3 ) ( 3 log ( 2 ) log ( 2 3 ) − 3 log ( 2 ) 2 iπ ) ( 3 log ( 2 ) log ( 2 3 ) + 3 log ( 2 ) 2 iπ ) / 1 \
| ----------|
| 3 |
| 27*log (2)|
-(-2*pi*I + log(3/2))*(2*pi*I + log(3/2))*log\2/3 / − ( log ( 3 2 ) − 2 i π ) ( log ( 3 2 ) + 2 i π ) log ( ( 2 3 ) 1 27 log ( 2 ) 3 ) - \left(\log{\left(\frac{3}{2} \right)} - 2 i \pi\right) \left(\log{\left(\frac{3}{2} \right)} + 2 i \pi\right) \log{\left(\left(\frac{2}{3}\right)^{\frac{1}{27 \log{\left(2 \right)}^{3}}} \right)} − ( log ( 2 3 ) − 2 iπ ) ( log ( 2 3 ) + 2 iπ ) log ( ( 3 2 ) 27 l o g ( 2 ) 3 1 ) x1 = 0.194987500240385 - 3.0215734278848*i x2 = 0.194987500240385 + 3.0215734278848*i