Решите уравнение 1,8х^2=0 (1,8х в квадрате равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

1,8х^2=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 1,8х^2=0

    Решение

    Вы ввели [src]
       2    
    9*x     
    ---- = 0
     5      
    $$\frac{9 x^{2}}{5} = 0$$
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = \frac{9}{5}$$
    $$b = 0$$
    $$c = 0$$
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (9/5) * (0) = 0

    Т.к. D = 0, то корень всего один.
    x = -b/2a = -0/2/(9/5)

    $$x_{1} = 0$$
    График
    Быстрый ответ [src]
    x1 = 0
    $$x_{1} = 0$$
    Сумма и произведение корней [src]
    сумма
    0 + 0
    $$0 + 0$$
    =
    0
    $$0$$
    произведение
    1*0
    $$1 \cdot 0$$
    =
    0
    $$0$$
    Теорема Виета
    перепишем уравнение
    $$\frac{9 x^{2}}{5} = 0$$
    из
    $$a x^{2} + b x + c = 0$$
    как приведённое квадратное уравнение
    $$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
    $$x^{2} = 0$$
    $$p x + q + x^{2} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = 0$$
    $$q = \frac{c}{a}$$
    $$q = 0$$
    Формулы Виета
    $$x_{1} + x_{2} = - p$$
    $$x_{1} x_{2} = q$$
    $$x_{1} + x_{2} = 0$$
    $$x_{1} x_{2} = 0$$
    Численный ответ [src]
    x1 = 0.0
    График
    1,8х^2=0 (уравнение) /media/krcore-image-pods/hash/equation/9/4d/6ad2ed3fb00927300b923dd18656e.png