1/y = Const - log(x) (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 1/y = Const - log(x)
Решение
Подробное решение
Дано уравнение
$$\frac{1}{y} = c - \log{\left(x \right)}$$
Перенесём правую часть уравнения левую часть уравнения со знаком минус
$$\log{\left(x \right)} = c - \frac{1}{y}$$
Это уравнение вида:
log(v)=p
По определению log
v=e^p
тогда
$$x = e^{\frac{c - \frac{1}{y}}{1}}$$
упрощаем
$$x = e^{c - \frac{1}{y}}$$ re(y) im(y)*im(c*y) re(y)*re(c*y) re(y) im(y)*im(c*y) re(y)*re(c*y)
- --------------- + --------------- + --------------- - --------------- + --------------- + ---------------
2 2 2 2 2 2 2 2 2 2 2 2
/ im(y) im(c*y)*re(y) im(y)*re(c*y) \ im (y) + re (y) im (y) + re (y) im (y) + re (y) im (y) + re (y) im (y) + re (y) im (y) + re (y) / im(y) im(c*y)*re(y) im(y)*re(c*y) \
x1 = cos|--------------- + --------------- - ---------------|*e + I*e *sin|--------------- + --------------- - ---------------|
| 2 2 2 2 2 2 | | 2 2 2 2 2 2 |
\im (y) + re (y) im (y) + re (y) im (y) + re (y)/ \im (y) + re (y) im (y) + re (y) im (y) + re (y)/
$$x_{1} = i e^{\frac{\operatorname{re}{\left(y\right)} \operatorname{re}{\left(c y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{\operatorname{re}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{\operatorname{im}{\left(y\right)} \operatorname{im}{\left(c y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}} \sin{\left(\frac{\operatorname{re}{\left(y\right)} \operatorname{im}{\left(c y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{\operatorname{re}{\left(c y\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{\operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} \right)} + e^{\frac{\operatorname{re}{\left(y\right)} \operatorname{re}{\left(c y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{\operatorname{re}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{\operatorname{im}{\left(y\right)} \operatorname{im}{\left(c y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}} \cos{\left(\frac{\operatorname{re}{\left(y\right)} \operatorname{im}{\left(c y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{\operatorname{re}{\left(c y\right)} \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + \frac{\operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} \right)}$$