1-y^2 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 1-y^2
Решение
Подробное решение
Это уравнение вида
a*y^2 + b*y + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$y_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$y_{2} = \frac{- \sqrt{D} - b}{2 a}$$
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
$$a = -1$$
$$b = 0$$
$$c = 1$$
, то
D = b^2 - 4 * a * c =
(0)^2 - 4 * (-1) * (1) = 4
Т.к. D > 0, то уравнение имеет два корня.
y1 = (-b + sqrt(D)) / (2*a)
y2 = (-b - sqrt(D)) / (2*a)
или
$$y_{1} = -1$$
$$y_{2} = 1$$