7√x-2x+15=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 7√x-2x+15=0

    Решение

    Вы ввели [src]
        ___               
    7*\/ x  - 2*x + 15 = 0
    7x2x+15=07 \sqrt{x} - 2 x + 15 = 0
    Подробное решение
    Дано уравнение
    7x2x+15=07 \sqrt{x} - 2 x + 15 = 0
    7x=2x157 \sqrt{x} = 2 x - 15
    Возведём обе части ур-ния в(о) 2-ую степень
    49x=(2x15)249 x = \left(2 x - 15\right)^{2}
    49x=4x260x+22549 x = 4 x^{2} - 60 x + 225
    Перенесём правую часть уравнения левую часть уравнения со знаком минус
    4x2+109x225=0- 4 x^{2} + 109 x - 225 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=4a = -4
    b=109b = 109
    c=225c = -225
    , то
    D = b^2 - 4 * a * c = 

    (109)^2 - 4 * (-4) * (-225) = 8281

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=94x_{1} = \frac{9}{4}
    Упростить
    x2=25x_{2} = 25
    Упростить

    Т.к.
    x=2x7157\sqrt{x} = \frac{2 x}{7} - \frac{15}{7}
    и
    x0\sqrt{x} \geq 0
    то
    2x71570\frac{2 x}{7} - \frac{15}{7} \geq 0
    или
    152x\frac{15}{2} \leq x
    x<x < \infty
    Тогда, окончательный ответ:
    x2=25x_{2} = 25
    График
    1520253035404550-2525
    Быстрый ответ [src]
    x1 = 25
    x1=25x_{1} = 25
    Сумма и произведение корней [src]
    сумма
    0 + 25
    0+250 + 25
    =
    25
    2525
    произведение
    1*25
    1251 \cdot 25
    =
    25
    2525
    Численный ответ [src]
    x1 = 25.0
    График
    7√x-2x+15=0 (уравнение) /media/krcore-image-pods/hash/equation/2/36/b4385ad5718ea1edb0122b6cef8ad.png