17+x^2=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 17+x^2=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 a = 1 a = 1 b = 0 b = 0 b = 0 c = 17 c = 17 c = 17 , тоD = b^2 - 4 * a * c = (0)^2 - 4 * (1) * (17) = -68 Т.к. D < 0, то уравнение не имеет вещественных корней, но комплексные корни имеются.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 17 i x_{1} = \sqrt{17} i x 1 = 17 i Упростить x 2 = − 17 i x_{2} = - \sqrt{17} i x 2 = − 17 i Упростить
График
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 0 20
x 1 = − 17 i x_{1} = - \sqrt{17} i x 1 = − 17 i x 2 = 17 i x_{2} = \sqrt{17} i x 2 = 17 i
Сумма и произведение корней
[src] ____ ____
0 - I*\/ 17 + I*\/ 17 ( 0 − 17 i ) + 17 i \left(0 - \sqrt{17} i\right) + \sqrt{17} i ( 0 − 17 i ) + 17 i ____ ____
1*-I*\/ 17 *I*\/ 17 17 i 1 ( − 17 i ) \sqrt{17} i 1 \left(- \sqrt{17} i\right) 17 i 1 ( − 17 i )
Теорема Виета
это приведённое квадратное уравнениеp x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 0 p = 0 p = 0 q = c a q = \frac{c}{a} q = a c q = 17 q = 17 q = 17 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 0 x_{1} + x_{2} = 0 x 1 + x 2 = 0 x 1 x 2 = 17 x_{1} x_{2} = 17 x 1 x 2 = 17