(16/9)^x-1=(3/4)^8 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: (16/9)^x-1=(3/4)^8
Решение
Подробное решение
Дано уравнение:( 16 9 ) x − 1 = ( 3 4 ) 8 \left(\frac{16}{9}\right)^{x} - 1 = \left(\frac{3}{4}\right)^{8} ( 9 16 ) x − 1 = ( 4 3 ) 8 или( ( 16 9 ) x − 1 ) − ( 3 4 ) 8 = 0 \left(\left(\frac{16}{9}\right)^{x} - 1\right) - \left(\frac{3}{4}\right)^{8} = 0 ( ( 9 16 ) x − 1 ) − ( 4 3 ) 8 = 0 или( 16 9 ) x = 72097 65536 \left(\frac{16}{9}\right)^{x} = \frac{72097}{65536} ( 9 16 ) x = 65536 72097 или( 16 9 ) x = 72097 65536 \left(\frac{16}{9}\right)^{x} = \frac{72097}{65536} ( 9 16 ) x = 65536 72097 - это простейшее показательное ур-ние Сделаем заменуv = ( 16 9 ) x v = \left(\frac{16}{9}\right)^{x} v = ( 9 16 ) x получимv − 72097 65536 = 0 v - \frac{72097}{65536} = 0 v − 65536 72097 = 0 илиv − 72097 65536 = 0 v - \frac{72097}{65536} = 0 v − 65536 72097 = 0 Переносим свободные слагаемые (без v) из левой части в правую, получим:v = 72097 65536 v = \frac{72097}{65536} v = 65536 72097 Получим ответ: v = 72097/65536 делаем обратную замену( 16 9 ) x = v \left(\frac{16}{9}\right)^{x} = v ( 9 16 ) x = v илиx = log ( v ) log ( 16 9 ) x = \frac{\log{\left(v \right)}}{\log{\left(\frac{16}{9} \right)}} x = log ( 9 16 ) log ( v ) Тогда, окончательный ответx 1 = log ( 72097 65536 ) log ( 16 9 ) = log ( ( 72097 65536 ) 1 log ( 16 9 ) ) x_{1} = \frac{\log{\left(\frac{72097}{65536} \right)}}{\log{\left(\frac{16}{9} \right)}} = \log{\left(\left(\frac{72097}{65536}\right)^{\frac{1}{\log{\left(\frac{16}{9} \right)}}} \right)} x 1 = log ( 9 16 ) log ( 65536 72097 ) = log ( ( 65536 72097 ) l o g ( 9 16 ) 1 )
График
-12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 -500 500
/ 1 \
| ----------|
| 2*log(4/3)|
|/65536\ |
x1 = -log||-----| |
\\72097/ / x 1 = − log ( ( 65536 72097 ) 1 2 log ( 4 3 ) ) x_{1} = - \log{\left(\left(\frac{65536}{72097}\right)^{\frac{1}{2 \log{\left(\frac{4}{3} \right)}}} \right)} x 1 = − log ( ( 72097 65536 ) 2 l o g ( 3 4 ) 1 ) / 1 \
| ---------|
| log(16/9)|
|/72097\ |
x2 = log||-----| |
\\65536/ / x 2 = log ( ( 72097 65536 ) 1 log ( 16 9 ) ) x_{2} = \log{\left(\left(\frac{72097}{65536}\right)^{\frac{1}{\log{\left(\frac{16}{9} \right)}}} \right)} x 2 = log ( ( 65536 72097 ) l o g ( 9 16 ) 1 )
Сумма и произведение корней
[src] / 1 \ / 1 \
| ----------| | ---------|
| 2*log(4/3)| | log(16/9)|
|/65536\ | |/72097\ |
- log||-----| | + log||-----| |
\\72097/ / \\65536/ / − log ( ( 65536 72097 ) 1 2 log ( 4 3 ) ) + log ( ( 72097 65536 ) 1 log ( 16 9 ) ) - \log{\left(\left(\frac{65536}{72097}\right)^{\frac{1}{2 \log{\left(\frac{4}{3} \right)}}} \right)} + \log{\left(\left(\frac{72097}{65536}\right)^{\frac{1}{\log{\left(\frac{16}{9} \right)}}} \right)} − log ( ( 72097 65536 ) 2 l o g ( 3 4 ) 1 ) + log ( ( 65536 72097 ) l o g ( 9 16 ) 1 ) / 1 \ / 1 \
| ----------| | ---------|
| 2*log(4/3)| | log(16/9)|
|/65536\ | |/72097\ |
- log||-----| | + log||-----| |
\\72097/ / \\65536/ / − log ( ( 65536 72097 ) 1 2 log ( 4 3 ) ) + log ( ( 72097 65536 ) 1 log ( 16 9 ) ) - \log{\left(\left(\frac{65536}{72097}\right)^{\frac{1}{2 \log{\left(\frac{4}{3} \right)}}} \right)} + \log{\left(\left(\frac{72097}{65536}\right)^{\frac{1}{\log{\left(\frac{16}{9} \right)}}} \right)} − log ( ( 72097 65536 ) 2 l o g ( 3 4 ) 1 ) + log ( ( 65536 72097 ) l o g ( 9 16 ) 1 ) / 1 \ / 1 \
| ----------| | ---------|
| 2*log(4/3)| | log(16/9)|
|/65536\ | |/72097\ |
-log||-----| |*log||-----| |
\\72097/ / \\65536/ / − log ( ( 65536 72097 ) 1 2 log ( 4 3 ) ) log ( ( 72097 65536 ) 1 log ( 16 9 ) ) - \log{\left(\left(\frac{65536}{72097}\right)^{\frac{1}{2 \log{\left(\frac{4}{3} \right)}}} \right)} \log{\left(\left(\frac{72097}{65536}\right)^{\frac{1}{\log{\left(\frac{16}{9} \right)}}} \right)} − log ( ( 72097 65536 ) 2 l o g ( 3 4 ) 1 ) log ( ( 65536 72097 ) l o g ( 9 16 ) 1 ) 2 / log(4294967296)\ 2
log (72097) - log\72097 / + 256*log (2)
-----------------------------------------------------
/ 2 / log(16)\ 2 \
4*\log (3) - log\3 / + 4*log (2)/ − log ( 7209 7 log ( 4294967296 ) ) + 256 log ( 2 ) 2 + log ( 72097 ) 2 4 ( − log ( 3 log ( 16 ) ) + log ( 3 ) 2 + 4 log ( 2 ) 2 ) \frac{- \log{\left(72097^{\log{\left(4294967296 \right)}} \right)} + 256 \log{\left(2 \right)}^{2} + \log{\left(72097 \right)}^{2}}{4 \left(- \log{\left(3^{\log{\left(16 \right)}} \right)} + \log{\left(3 \right)}^{2} + 4 \log{\left(2 \right)}^{2}\right)} 4 ( − log ( 3 l o g ( 16 ) ) + log ( 3 ) 2 + 4 log ( 2 ) 2 ) − log ( 7209 7 l o g ( 4294967296 ) ) + 256 log ( 2 ) 2 + log ( 72097 ) 2