sin(2x)=а (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: sin(2x)=а
Решение
Подробное решение
Дано уравнение
sin(2x)=a
- это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
2x=2πn+asin(a)
2x=2πn−asin(a)+π
Или
2x=2πn+asin(a)
2x=2πn−asin(a)+π
, где n - любое целое число
Разделим обе части полученного ур-ния на
2
получим ответ:
x1=πn+2asin(a)
x2=πn−2asin(a)+2π pi asin(a)
x1 = -- - -------
2 2
x1=−2asin(a)+2π x2=2asin(a)
Сумма и произведение корней
[src] pi asin(a) asin(a)
0 + -- - ------- + -------
2 2 2
((−2asin(a)+2π)+0)+2asin(a) /pi asin(a)\ asin(a)
1*|-- - -------|*-------
\2 2 / 2
1(−2asin(a)+2π)2asin(a) (pi - asin(a))*asin(a)
----------------------
4
4(π−asin(a))asin(a)