sin(cosx)=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sin(cosx)=0

    Решение

    Вы ввели [src]
    sin(cos(x)) = 0
    sin(cos(x))=0\sin{\left(\cos{\left(x \right)} \right)} = 0
    Подробное решение
    Дано уравнение
    sin(cos(x))=0\sin{\left(\cos{\left(x \right)} \right)} = 0
    преобразуем
    sin(cos(x))1=0\sin{\left(\cos{\left(x \right)} \right)} - 1 = 0
    sin(cos(x))1=0\sin{\left(\cos{\left(x \right)} \right)} - 1 = 0
    Сделаем замену
    w=sin(cos(x))w = \sin{\left(\cos{\left(x \right)} \right)}
    Переносим свободные слагаемые (без w)
    из левой части в правую, получим:
    w=1w = 1
    Получим ответ: w = 1
    делаем обратную замену
    sin(cos(x))=w\sin{\left(\cos{\left(x \right)} \right)} = w
    подставляем w:
    График
    0-80-60-40-2020406080-1001002-2
    Быстрый ответ [src]
         pi
    x1 = --
         2 
    x1=π2x_{1} = \frac{\pi}{2}
         3*pi
    x2 = ----
          2  
    x2=3π2x_{2} = \frac{3 \pi}{2}
    x3 = 2*pi - I*im(acos(pi))
    x3=2πiim(acos(π))x_{3} = 2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\pi \right)}\right)}
    x4 = I*im(acos(pi)) + re(acos(pi))
    x4=re(acos(π))+iim(acos(π))x_{4} = \operatorname{re}{\left(\operatorname{acos}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\pi \right)}\right)}
    Сумма и произведение корней [src]
    сумма
        pi   3*pi                                                        
    0 + -- + ---- + 2*pi - I*im(acos(pi)) + I*im(acos(pi)) + re(acos(pi))
        2     2                                                          
    (((0+π2)+3π2)+(2πiim(acos(π))))+(re(acos(π))+iim(acos(π)))\left(\left(\left(0 + \frac{\pi}{2}\right) + \frac{3 \pi}{2}\right) + \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\pi \right)}\right)}\right)\right) + \left(\operatorname{re}{\left(\operatorname{acos}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\pi \right)}\right)}\right)
    =
    4*pi + re(acos(pi))
    re(acos(π))+4π\operatorname{re}{\left(\operatorname{acos}{\left(\pi \right)}\right)} + 4 \pi
    произведение
      pi 3*pi                                                        
    1*--*----*(2*pi - I*im(acos(pi)))*(I*im(acos(pi)) + re(acos(pi)))
      2   2                                                          
    3π21π2(2πiim(acos(π)))(re(acos(π))+iim(acos(π)))\frac{3 \pi}{2} \cdot 1 \frac{\pi}{2} \cdot \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\pi \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\pi \right)}\right)}\right)
    =
        2                                                        
    3*pi *(2*pi - I*im(acos(pi)))*(I*im(acos(pi)) + re(acos(pi)))
    -------------------------------------------------------------
                                  4                              
    3π2(2πiim(acos(π)))(re(acos(π))+iim(acos(π)))4\frac{3 \pi^{2} \cdot \left(2 \pi - i \operatorname{im}{\left(\operatorname{acos}{\left(\pi \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{acos}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{acos}{\left(\pi \right)}\right)}\right)}{4}
    Численный ответ [src]
    x1 = 64.4026493985908
    x2 = -42.4115008234622
    x3 = 54.9778714378214
    x4 = 70.6858347057703
    x5 = 39.2699081698724
    x6 = -23.5619449019235
    x7 = 76.9690200129499
    x8 = 73.8274273593601
    x9 = 95.8185759344887
    x10 = -83.2522053201295
    x11 = 67.5442420521806
    x12 = 1.5707963267949
    x13 = -45.553093477052
    x14 = 98.9601685880785
    x15 = 32.9867228626928
    x16 = -54.9778714378214
    x17 = 89.5353906273091
    x18 = -20.4203522483337
    x19 = 61.261056745001
    x20 = -7.85398163397448
    x21 = 86.3937979737193
    x22 = -10.9955742875643
    x23 = 14.1371669411541
    x24 = -80.1106126665397
    x25 = -64.4026493985908
    x26 = -73.8274273593601
    x27 = 26.7035375555132
    x28 = -26.7035375555132
    x29 = -14.1371669411541
    x30 = 7.85398163397448
    x31 = -92.6769832808989
    x32 = 29.845130209103
    x33 = -67.5442420521806
    x34 = 58.1194640914112
    x35 = -48.6946861306418
    x36 = -76.9690200129499
    x37 = -61.261056745001
    x38 = -29.845130209103
    x39 = 17.2787595947439
    x40 = 48.6946861306418
    x41 = 45.553093477052
    x42 = 42.4115008234622
    x43 = 80.1106126665397
    x44 = 83.2522053201295
    x45 = 10.9955742875643
    x46 = -89.5353906273091
    x47 = -58.1194640914112
    x48 = -39.2699081698724
    x49 = -86.3937979737193
    x50 = 23.5619449019235
    x51 = -17.2787595947439
    x52 = 36.1283155162826
    x53 = 92.6769832808989
    x54 = -95.8185759344887
    x55 = -70.6858347057703
    x56 = 4.71238898038469
    x57 = 51.8362787842316
    x58 = -98.9601685880785
    x59 = -32.9867228626928
    x60 = 20.4203522483337
    x61 = -4.71238898038469
    x62 = -36.1283155162826
    x63 = -158.650429006285
    x64 = -51.8362787842316
    x65 = -1.5707963267949
    График
    sin(cosx)=0 (уравнение) /media/krcore-image-pods/hash/equation/4/e6/15064a8b684a7d6ac6b4be158559b.png