Решите уравнение sin(sin(sin(x)))=0 (синус от (синус от (синус от (х))) равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

sin(sin(sin(x)))=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sin(sin(sin(x)))=0

    Решение

    Вы ввели [src]
    sin(sin(sin(x))) = 0
    $$\sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} = 0$$
    Подробное решение
    Дано уравнение
    $$\sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} = 0$$
    преобразуем
    $$\sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - 1 = 0$$
    $$\sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - 1 = 0$$
    Сделаем замену
    $$w = \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}$$
    Переносим свободные слагаемые (без w)
    из левой части в правую, получим:
    $$w = 1$$
    Получим ответ: w = 1
    делаем обратную замену
    $$\sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} = w$$
    подставляем w:
    График
    Быстрый ответ [src]
    x1 = 0
    $$x_{1} = 0$$
    x2 = pi
    $$x_{2} = \pi$$
    x3 = pi - re(asin(pi)) - I*im(asin(pi))
    $$x_{3} = - \operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}$$
    x4 = pi - re(asin(pi - asin(pi))) - I*im(asin(pi - asin(pi)))
    $$x_{4} = - \operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}$$
    x5 = pi - re(asin(asin(pi))) - I*im(asin(asin(pi)))
    $$x_{5} = - \operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}$$
    x6 = I*im(asin(pi)) + re(asin(pi))
    $$x_{6} = \operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}$$
    x7 = I*im(asin(pi - asin(pi))) + re(asin(pi - asin(pi)))
    $$x_{7} = \operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}$$
    x8 = I*im(asin(asin(pi))) + re(asin(asin(pi)))
    $$x_{8} = \operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}$$
    Сумма и произведение корней [src]
    сумма
    pi + pi - re(asin(pi)) - I*im(asin(pi)) + pi - re(asin(pi - asin(pi))) - I*im(asin(pi - asin(pi))) + pi - re(asin(asin(pi))) - I*im(asin(asin(pi))) + I*im(asin(pi)) + re(asin(pi)) + I*im(asin(pi - asin(pi))) + re(asin(pi - asin(pi))) + I*im(asin(asin(pi))) + re(asin(asin(pi)))
    $$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) + \left(\left(\left(\operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}\right) + \left(\left(\left(- \operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) + \left(\pi + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}\right)\right)\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}\right)\right)\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}\right)\right)$$
    =
    4*pi
    $$4 \pi$$
    произведение
    0*pi*(pi - re(asin(pi)) - I*im(asin(pi)))*(pi - re(asin(pi - asin(pi))) - I*im(asin(pi - asin(pi))))*(pi - re(asin(asin(pi))) - I*im(asin(asin(pi))))*(I*im(asin(pi)) + re(asin(pi)))*(I*im(asin(pi - asin(pi))) + re(asin(pi - asin(pi))))*(I*im(asin(asin(pi))) + re(asin(asin(pi))))
    $$0 \pi \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}\right)$$
    =
    0
    $$0$$
    Численный ответ [src]
    x1 = 15.707963267949
    x2 = 50.2654824574367
    x3 = -56.5486677646163
    x4 = 9.42477796076938
    x5 = -53.4070751110265
    x6 = 6.28318530717959
    x7 = 84.8230016469244
    x8 = -43.9822971502571
    x9 = -62.8318530717959
    x10 = 72.2566310325652
    x11 = -50.2654824574367
    x12 = -65.9734457253857
    x13 = -12.5663706143592
    x14 = -94.2477796076938
    x15 = 31.4159265358979
    x16 = -40.8407044966673
    x17 = 56.5486677646163
    x18 = 18.8495559215388
    x19 = -34.5575191894877
    x20 = 91.106186954104
    x21 = 25.1327412287183
    x22 = -81.6814089933346
    x23 = 0.0
    x24 = -87.9645943005142
    x25 = -78.5398163397448
    x26 = -31.4159265358979
    x27 = 65.9734457253857
    x28 = 47.1238898038469
    x29 = -69.1150383789755
    x30 = 1793.84940519977
    x31 = 81.6814089933346
    x32 = -59.6902604182061
    x33 = 87.9645943005142
    x34 = -6.28318530717959
    x35 = -91.106186954104
    x36 = -3.14159265358979
    x37 = 37.6991118430775
    x38 = -15.707963267949
    x39 = -37.6991118430775
    x40 = -100.530964914873
    x41 = -75.398223686155
    x42 = -9.42477796076938
    x43 = 78.5398163397448
    x44 = 69.1150383789755
    x45 = 75.398223686155
    x46 = 34.5575191894877
    x47 = 12.5663706143592
    x48 = -97.3893722612836
    x49 = -28.2743338823081
    x50 = 28.2743338823081
    x51 = 62.8318530717959
    x52 = -72.2566310325652
    x53 = -125.663706143592
    x54 = 43.9822971502571
    x55 = -1668.18569905618
    x56 = 21.9911485751286
    x57 = -18.8495559215388
    x58 = 59.6902604182061
    x59 = -21.9911485751286
    x60 = 97.3893722612836
    x61 = -25.1327412287183
    x62 = 53.4070751110265
    x63 = -474.380490692059
    x64 = -47.1238898038469
    x65 = 100.530964914873
    x66 = 3204.42450666159
    x67 = 3.14159265358979
    x68 = 40.8407044966673
    x69 = 94.2477796076938
    x70 = -84.8230016469244
    График
    sin(sin(sin(x)))=0 (уравнение) /media/krcore-image-pods/hash/equation/d/91/6a2c3bbdec97a6796632dba045993.png