Подробное решение
Дано уравнение
$$\sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} = 0$$
преобразуем
$$\sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - 1 = 0$$
$$\sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - 1 = 0$$
Сделаем замену
$$w = \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}$$
Переносим свободные слагаемые (без w)
из левой части в правую, получим:
$$w = 1$$
Получим ответ: w = 1
делаем обратную замену
$$\sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} = w$$
подставляем w:
x3 = pi - re(asin(pi)) - I*im(asin(pi))
$$x_{3} = - \operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}$$
x4 = pi - re(asin(pi - asin(pi))) - I*im(asin(pi - asin(pi)))
$$x_{4} = - \operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}$$
x5 = pi - re(asin(asin(pi))) - I*im(asin(asin(pi)))
$$x_{5} = - \operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}$$
x6 = I*im(asin(pi)) + re(asin(pi))
$$x_{6} = \operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}$$
x7 = I*im(asin(pi - asin(pi))) + re(asin(pi - asin(pi)))
$$x_{7} = \operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}$$
x8 = I*im(asin(asin(pi))) + re(asin(asin(pi)))
$$x_{8} = \operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}$$
Сумма и произведение корней
[src]pi + pi - re(asin(pi)) - I*im(asin(pi)) + pi - re(asin(pi - asin(pi))) - I*im(asin(pi - asin(pi))) + pi - re(asin(asin(pi))) - I*im(asin(asin(pi))) + I*im(asin(pi)) + re(asin(pi)) + I*im(asin(pi - asin(pi))) + re(asin(pi - asin(pi))) + I*im(asin(asin(pi))) + re(asin(asin(pi)))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) + \left(\left(\left(\operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}\right) + \left(\left(\left(- \operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) + \left(\pi + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}\right)\right)\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}\right)\right)\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}\right)\right)$$
0*pi*(pi - re(asin(pi)) - I*im(asin(pi)))*(pi - re(asin(pi - asin(pi))) - I*im(asin(pi - asin(pi))))*(pi - re(asin(asin(pi))) - I*im(asin(asin(pi))))*(I*im(asin(pi)) + re(asin(pi)))*(I*im(asin(pi - asin(pi))) + re(asin(pi - asin(pi))))*(I*im(asin(asin(pi))) + re(asin(asin(pi))))
$$0 \pi \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\pi \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\pi - \operatorname{asin}{\left(\pi \right)} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\operatorname{asin}{\left(\pi \right)} \right)}\right)}\right)$$