sin(sin(sin(x)))=0 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: sin(sin(sin(x)))=0
Решение
Подробное решение
Дано уравнение
sin(sin(sin(x)))=0
преобразуем
sin(sin(sin(x)))−1=0
sin(sin(sin(x)))−1=0
Сделаем замену
w=sin(sin(sin(x)))
Переносим свободные слагаемые (без w)
из левой части в правую, получим:
w=1
Получим ответ: w = 1
делаем обратную замену
sin(sin(sin(x)))=w
подставляем w:
График
x3 = pi - re(asin(pi)) - I*im(asin(pi))
x3=−re(asin(π))+π−iim(asin(π)) x4 = pi - re(asin(pi - asin(pi))) - I*im(asin(pi - asin(pi)))
x4=−re(asin(π−asin(π)))+π−iim(asin(π−asin(π))) x5 = pi - re(asin(asin(pi))) - I*im(asin(asin(pi)))
x5=−re(asin(asin(π)))+π−iim(asin(asin(π))) x6 = I*im(asin(pi)) + re(asin(pi))
x6=re(asin(π))+iim(asin(π)) x7 = I*im(asin(pi - asin(pi))) + re(asin(pi - asin(pi)))
x7=re(asin(π−asin(π)))+iim(asin(π−asin(π))) x8 = I*im(asin(asin(pi))) + re(asin(asin(pi)))
x8=re(asin(asin(π)))+iim(asin(asin(π)))
Сумма и произведение корней
[src]pi + pi - re(asin(pi)) - I*im(asin(pi)) + pi - re(asin(pi - asin(pi))) - I*im(asin(pi - asin(pi))) + pi - re(asin(asin(pi))) - I*im(asin(asin(pi))) + I*im(asin(pi)) + re(asin(pi)) + I*im(asin(pi - asin(pi))) + re(asin(pi - asin(pi))) + I*im(asin(asin(pi))) + re(asin(asin(pi)))
(re(asin(asin(π)))+iim(asin(asin(π))))+(((re(asin(π))+iim(asin(π)))+(((−re(asin(π−asin(π)))+π−iim(asin(π−asin(π))))+(π+(−re(asin(π))+π−iim(asin(π)))))+(−re(asin(asin(π)))+π−iim(asin(asin(π))))))+(re(asin(π−asin(π)))+iim(asin(π−asin(π))))) 0*pi*(pi - re(asin(pi)) - I*im(asin(pi)))*(pi - re(asin(pi - asin(pi))) - I*im(asin(pi - asin(pi))))*(pi - re(asin(asin(pi))) - I*im(asin(asin(pi))))*(I*im(asin(pi)) + re(asin(pi)))*(I*im(asin(pi - asin(pi))) + re(asin(pi - asin(pi))))*(I*im(asin(asin(pi))) + re(asin(asin(pi))))
0π(−re(asin(π))+π−iim(asin(π)))(−re(asin(π−asin(π)))+π−iim(asin(π−asin(π))))(−re(asin(asin(π)))+π−iim(asin(asin(π))))(re(asin(π))+iim(asin(π)))(re(asin(π−asin(π)))+iim(asin(π−asin(π))))(re(asin(asin(π)))+iim(asin(asin(π))))