sin^2(x)=2 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: sin^2(x)=2
Решение
Подробное решение
Дано уравнениеsin 2 ( x ) = 2 \sin^{2}{\left(x \right)} = 2 sin 2 ( x ) = 2 преобразуемsin 2 ( x ) − 2 = 0 \sin^{2}{\left(x \right)} - 2 = 0 sin 2 ( x ) − 2 = 0 sin 2 ( x ) − 2 = 0 \sin^{2}{\left(x \right)} - 2 = 0 sin 2 ( x ) − 2 = 0 Сделаем заменуw = sin ( x ) w = \sin{\left(x \right)} w = sin ( x ) Это уравнение видаa*w^2 + b*w + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:w 1 = D − b 2 a w_{1} = \frac{\sqrt{D} - b}{2 a} w 1 = 2 a D − b w 2 = − D − b 2 a w_{2} = \frac{- \sqrt{D} - b}{2 a} w 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 a = 1 a = 1 b = 0 b = 0 b = 0 c = − 2 c = -2 c = − 2 , тоD = b^2 - 4 * a * c = (0)^2 - 4 * (1) * (-2) = 8 Т.к. D > 0, то уравнение имеет два корня.w1 = (-b + sqrt(D)) / (2*a) w2 = (-b - sqrt(D)) / (2*a) илиw 1 = 2 w_{1} = \sqrt{2} w 1 = 2 Упростить w 2 = − 2 w_{2} = - \sqrt{2} w 2 = − 2 Упростить делаем обратную заменуsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w Дано уравнениеsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w - это простейшее тригонометрическое ур-ние Это ур-ние преобразуется вx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π Илиx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π , где n - любое целое число подставляем w:x 1 = 2 π n + asin ( w 1 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)} x 1 = 2 πn + asin ( w 1 ) x 1 = 2 π n + asin ( 2 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(\sqrt{2} \right)} x 1 = 2 πn + asin ( 2 ) x 1 = 2 π n + asin ( 2 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(\sqrt{2} \right)} x 1 = 2 πn + asin ( 2 ) x 2 = 2 π n + asin ( w 2 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)} x 2 = 2 πn + asin ( w 2 ) x 2 = 2 π n + asin ( − 2 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(- \sqrt{2} \right)} x 2 = 2 πn + asin ( − 2 ) x 2 = 2 π n − asin ( 2 ) x_{2} = 2 \pi n - \operatorname{asin}{\left(\sqrt{2} \right)} x 2 = 2 πn − asin ( 2 ) x 3 = 2 π n − asin ( w 1 ) + π x_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi x 3 = 2 πn − asin ( w 1 ) + π x 3 = 2 π n + π − asin ( 2 ) x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(\sqrt{2} \right)} x 3 = 2 πn + π − asin ( 2 ) x 3 = 2 π n + π − asin ( 2 ) x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(\sqrt{2} \right)} x 3 = 2 πn + π − asin ( 2 ) x 4 = 2 π n − asin ( w 2 ) + π x_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi x 4 = 2 πn − asin ( w 2 ) + π x 4 = 2 π n + π − asin ( − 2 ) x_{4} = 2 \pi n + \pi - \operatorname{asin}{\left(- \sqrt{2} \right)} x 4 = 2 πn + π − asin ( − 2 ) x 4 = 2 π n + π + asin ( 2 ) x_{4} = 2 \pi n + \pi + \operatorname{asin}{\left(\sqrt{2} \right)} x 4 = 2 πn + π + asin ( 2 )
График
0 -80 -60 -40 -20 20 40 60 80 -100 100 0 4
/ / ___\\ / / ___\\
x1 = pi - re\asin\\/ 2 // - I*im\asin\\/ 2 // x 1 = − re ( asin ( 2 ) ) + π − i im ( asin ( 2 ) ) x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} x 1 = − re ( asin ( 2 ) ) + π − i im ( asin ( 2 ) ) / / ___\\ / / ___\\
x2 = pi + I*im\asin\\/ 2 // + re\asin\\/ 2 // x 2 = re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} x 2 = re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) / / ___\\ / / ___\\
x3 = - re\asin\\/ 2 // - I*im\asin\\/ 2 // x 3 = − re ( asin ( 2 ) ) − i im ( asin ( 2 ) ) x_{3} = - \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} x 3 = − re ( asin ( 2 ) ) − i im ( asin ( 2 ) ) / / ___\\ / / ___\\
x4 = I*im\asin\\/ 2 // + re\asin\\/ 2 // x 4 = re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) x_{4} = \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} x 4 = re ( asin ( 2 ) ) + i im ( asin ( 2 ) )
Сумма и произведение корней
[src] / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\ / / ___\\
0 + pi - re\asin\\/ 2 // - I*im\asin\\/ 2 // + pi + I*im\asin\\/ 2 // + re\asin\\/ 2 // + - re\asin\\/ 2 // - I*im\asin\\/ 2 // + I*im\asin\\/ 2 // + re\asin\\/ 2 // ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) − ( − 2 π + re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) - \left(- 2 \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) − ( − 2 π + re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
1*\pi - re\asin\\/ 2 // - I*im\asin\\/ 2 ///*\pi + I*im\asin\\/ 2 // + re\asin\\/ 2 ///*\- re\asin\\/ 2 // - I*im\asin\\/ 2 ///*\I*im\asin\\/ 2 // + re\asin\\/ 2 /// 1 ( − re ( asin ( 2 ) ) + π − i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) ) ( − re ( asin ( 2 ) ) − i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) 1 \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) 1 ( − re ( asin ( 2 ) ) + π − i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) ) ( − re ( asin ( 2 ) ) − i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) 2
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
\I*im\asin\\/ 2 // + re\asin\\/ 2 /// *\pi + I*im\asin\\/ 2 // + re\asin\\/ 2 ///*\-pi + I*im\asin\\/ 2 // + re\asin\\/ 2 /// ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) 2 ( − π + re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) ) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right)^{2} \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(\sqrt{2} \right)}\right)}\right) ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) 2 ( − π + re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) ) x1 = 1.5707963267949 + 0.881373587019543*i x2 = 4.71238898038469 - 0.881373587019543*i x3 = -1.5707963267949 + 0.881373587019543*i x4 = 1.5707963267949 - 0.881373587019543*i