sin(x)=-1/7 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sin(x)=-1/7

    Решение

    Вы ввели [src]
    sin(x) = -1/7
    sin(x)=17\sin{\left(x \right)} = - \frac{1}{7}
    Подробное решение
    Дано уравнение
    sin(x)=17\sin{\left(x \right)} = - \frac{1}{7}
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    x=2πn+asin(17)x = 2 \pi n + \operatorname{asin}{\left(- \frac{1}{7} \right)}
    x=2πnasin(17)+πx = 2 \pi n - \operatorname{asin}{\left(- \frac{1}{7} \right)} + \pi
    Или
    x=2πnasin(17)x = 2 \pi n - \operatorname{asin}{\left(\frac{1}{7} \right)}
    x=2πn+asin(17)+πx = 2 \pi n + \operatorname{asin}{\left(\frac{1}{7} \right)} + \pi
    , где n - любое целое число
    График
    0-80-60-40-2020406080-1001002-2
    Быстрый ответ [src]
    x1 = pi + asin(1/7)
    x1=asin(17)+πx_{1} = \operatorname{asin}{\left(\frac{1}{7} \right)} + \pi
    x2 = -asin(1/7)
    x2=asin(17)x_{2} = - \operatorname{asin}{\left(\frac{1}{7} \right)}
    Сумма и произведение корней [src]
    сумма
    0 + pi + asin(1/7) - asin(1/7)
    asin(17)+(0+(asin(17)+π))- \operatorname{asin}{\left(\frac{1}{7} \right)} + \left(0 + \left(\operatorname{asin}{\left(\frac{1}{7} \right)} + \pi\right)\right)
    =
    pi
    π\pi
    произведение
    1*(pi + asin(1/7))*-asin(1/7)
    1(asin(17)+π)(asin(17))1 \left(\operatorname{asin}{\left(\frac{1}{7} \right)} + \pi\right) \left(- \operatorname{asin}{\left(\frac{1}{7} \right)}\right)
    =
    -(pi + asin(1/7))*asin(1/7)
    (asin(17)+π)asin(17)- \left(\operatorname{asin}{\left(\frac{1}{7} \right)} + \pi\right) \operatorname{asin}{\left(\frac{1}{7} \right)}
    Численный ответ [src]
    x1 = 22.1344961440339
    x2 = 56.4053201957109
    x3 = 47.2672373727523
    x4 = -12.7097181832645
    x5 = -31.5592741048033
    x6 = 66.116793294291
    x7 = -103.529209999558
    x8 = -9.28143039186401
    x9 = -2.99824508468443
    x10 = -25.2760887976237
    x11 = -40.6973569277619
    x12 = 97.532719830189
    x13 = 53.5504226799318
    x14 = 94.1044320387884
    x15 = -97.2460246923782
    x16 = 62.6885055028905
    x17 = -100.674312483779
    x18 = -44.1256447191625
    x19 = 72.3999786014706
    x20 = 37.5557642741722
    x21 = -6.42653287608495
    x22 = -0.143347568905365
    x23 = 75.2548761172497
    x24 = 18.7062083526334
    x25 = -75.5415712550604
    x26 = 3.28494022249516
    x27 = 12.4230230454538
    x28 = 31.2725789669926
    x29 = -69.2583859478808
    x30 = 9.56812552967475
    x31 = 84.9663492158298
    x32 = -62.9752006407012
    x33 = -28.1309863134028
    x34 = -34.4141716205824
    x35 = 87.8212467316089
    x36 = -21.8478010062232
    x37 = -88.1079418694196
    x38 = 24.989393659813
    x39 = -94.3911271765992
    x40 = 28.4176814512135
    x41 = -84.6796540780191
    x42 = 59.8336079871114
    x43 = 68.9716908100701
    x44 = -37.8424594119829
    x45 = 81.5380614244293
    x46 = 298.594649659936
    x47 = 6.13983773827422
    x48 = 15.8513108368543
    x49 = -65.8300981564803
    x50 = -59.5469128493007
    x51 = -56.6920153335216
    x52 = -90.9628393851986
    x53 = 40.9840520655727
    x54 = -78.3964687708395
    x55 = -50.4088300263421
    x56 = 43.8389495813517
    x57 = -18.9929034904441
    x58 = -53.2637275421211
    x59 = 34.7008667583931
    x60 = -81.82475656224
    x61 = 263.750435332637
    x62 = 91.2495345230094
    x63 = 50.1221348885313
    x64 = -46.9805422349415
    x65 = 100.387617345968
    x66 = -15.5646156990436
    x67 = 78.6831639086502
    x68 = -72.1132834636599
    График
    sin(x)=-1/7 (уравнение) /media/krcore-image-pods/hash/equation/d/98/1526fff0afc66fe50969f131eeddd.png