sin(x)=-5 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sin(x)=-5

    Решение

    Вы ввели [src]
    sin(x) = -5
    sin(x)=5\sin{\left(x \right)} = -5
    Подробное решение
    Дано уравнение
    sin(x)=5\sin{\left(x \right)} = -5
    - это простейшее тригонометрическое ур-ние
    Т.к. правая часть ур-ния
    по модулю =
    True

    но sin
    не может быть больше 1 или меньше -1
    зн. решения у соотв. ур-ния не существует.
    График
    0-80-60-40-2020406080-1001005-10
    Быстрый ответ [src]
    x1 = pi + I*im(asin(5)) + re(asin(5))
    x1=re(asin(5))+π+iim(asin(5))x_{1} = \operatorname{re}{\left(\operatorname{asin}{\left(5 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(5 \right)}\right)}
    x2 = -re(asin(5)) - I*im(asin(5))
    x2=re(asin(5))iim(asin(5))x_{2} = - \operatorname{re}{\left(\operatorname{asin}{\left(5 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(5 \right)}\right)}
    Сумма и произведение корней [src]
    сумма
    0 + pi + I*im(asin(5)) + re(asin(5)) + -re(asin(5)) - I*im(asin(5))
    (0+(re(asin(5))+π+iim(asin(5))))(re(asin(5))+iim(asin(5)))\left(0 + \left(\operatorname{re}{\left(\operatorname{asin}{\left(5 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(5 \right)}\right)}\right)\right) - \left(\operatorname{re}{\left(\operatorname{asin}{\left(5 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(5 \right)}\right)}\right)
    =
    pi
    π\pi
    произведение
    1*(pi + I*im(asin(5)) + re(asin(5)))*(-re(asin(5)) - I*im(asin(5)))
    (re(asin(5))iim(asin(5)))1(re(asin(5))+π+iim(asin(5)))\left(- \operatorname{re}{\left(\operatorname{asin}{\left(5 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(5 \right)}\right)}\right) 1 \left(\operatorname{re}{\left(\operatorname{asin}{\left(5 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(5 \right)}\right)}\right)
    =
    -(I*im(asin(5)) + re(asin(5)))*(pi + I*im(asin(5)) + re(asin(5)))
    (re(asin(5))+iim(asin(5)))(re(asin(5))+π+iim(asin(5)))- \left(\operatorname{re}{\left(\operatorname{asin}{\left(5 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(5 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(5 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(5 \right)}\right)}\right)
    Численный ответ [src]
    x1 = 4.71238898038469 - 2.29243166956118*i
    x2 = -1.5707963267949 + 2.29243166956118*i
    График
    sin(x)=-5 (уравнение) /media/krcore-image-pods/hash/equation/5/2b/b452028542defab5507dbd18a2710.png