Решите уравнение sin(z)+cos(z)=3 (синус от (z) плюс косинус от (z) равно 3) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

sin(z)+cos(z)=3 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sin(z)+cos(z)=3

    Решение

    Вы ввели [src]
    sin(z) + cos(z) = 3
    $$\sin{\left(z \right)} + \cos{\left(z \right)} = 3$$
    График
    Быстрый ответ [src]
             /    /        ___\\         /    /        ___\\
             |    |1   I*\/ 7 ||         |    |1   I*\/ 7 ||
    z1 = 2*re|atan|- - -------|| + 2*I*im|atan|- - -------||
             \    \4      4   //         \    \4      4   //
    $$z_{1} = 2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)}$$
             /    /        ___\\         /    /        ___\\
             |    |1   I*\/ 7 ||         |    |1   I*\/ 7 ||
    z2 = 2*re|atan|- + -------|| + 2*I*im|atan|- + -------||
             \    \4      4   //         \    \4      4   //
    $$z_{2} = 2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)}$$
    Сумма и произведение корней [src]
    сумма
            /    /        ___\\         /    /        ___\\       /    /        ___\\         /    /        ___\\
            |    |1   I*\/ 7 ||         |    |1   I*\/ 7 ||       |    |1   I*\/ 7 ||         |    |1   I*\/ 7 ||
    0 + 2*re|atan|- - -------|| + 2*I*im|atan|- - -------|| + 2*re|atan|- + -------|| + 2*I*im|atan|- + -------||
            \    \4      4   //         \    \4      4   //       \    \4      4   //         \    \4      4   //
    $$\left(0 + \left(2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)}\right)\right) + \left(2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)}\right)$$
    =
        /    /        ___\\       /    /        ___\\         /    /        ___\\         /    /        ___\\
        |    |1   I*\/ 7 ||       |    |1   I*\/ 7 ||         |    |1   I*\/ 7 ||         |    |1   I*\/ 7 ||
    2*re|atan|- - -------|| + 2*re|atan|- + -------|| + 2*I*im|atan|- - -------|| + 2*I*im|atan|- + -------||
        \    \4      4   //       \    \4      4   //         \    \4      4   //         \    \4      4   //
    $$2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)} + 2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)}$$
    произведение
      /    /    /        ___\\         /    /        ___\\\ /    /    /        ___\\         /    /        ___\\\
      |    |    |1   I*\/ 7 ||         |    |1   I*\/ 7 ||| |    |    |1   I*\/ 7 ||         |    |1   I*\/ 7 |||
    1*|2*re|atan|- - -------|| + 2*I*im|atan|- - -------|||*|2*re|atan|- + -------|| + 2*I*im|atan|- + -------|||
      \    \    \4      4   //         \    \4      4   /// \    \    \4      4   //         \    \4      4   ///
    $$1 \cdot \left(2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)}\right) \left(2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)}\right)$$
    =
      /    /    /        ___\\     /    /        ___\\\ /    /    /        ___\\     /    /        ___\\\
      |    |    |1   I*\/ 7 ||     |    |1   I*\/ 7 ||| |    |    |1   I*\/ 7 ||     |    |1   I*\/ 7 |||
    4*|I*im|atan|- - -------|| + re|atan|- - -------|||*|I*im|atan|- + -------|| + re|atan|- + -------|||
      \    \    \4      4   //     \    \4      4   /// \    \    \4      4   //     \    \4      4   ///
    $$4 \left(\operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)} + i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} - \frac{\sqrt{7} i}{4} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)} + i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{4} + \frac{\sqrt{7} i}{4} \right)}\right)}\right)$$
    Численный ответ [src]
    z1 = 0.785398163397448 - 1.38432969165679*i
    z2 = 0.785398163397448 + 1.38432969165679*i
    График
    sin(z)+cos(z)=3 (уравнение) /media/krcore-image-pods/hash/equation/0/2b/6276bbb5d11dae9f170124f726a7a.png