sin(z)=3i/4 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sin(z)=3i/4

    Решение

    Вы ввели [src]
             3*I
    sin(z) = ---
              4 
    sin(z)=3i4\sin{\left(z \right)} = \frac{3 i}{4}
    Подробное решение
    Дано уравнение
    sin(z)=3i4\sin{\left(z \right)} = \frac{3 i}{4}
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    z=2πn+asin(3i4)z = 2 \pi n + \operatorname{asin}{\left(\frac{3 i}{4} \right)}
    z=2πn+πasin(3i4)z = 2 \pi n + \pi - \operatorname{asin}{\left(\frac{3 i}{4} \right)}
    Или
    z=2πn+iasinh(34)z = 2 \pi n + i \operatorname{asinh}{\left(\frac{3}{4} \right)}
    z=2πn+πiasinh(34)z = 2 \pi n + \pi - i \operatorname{asinh}{\left(\frac{3}{4} \right)}
    , где n - любое целое число
    График
    Быстрый ответ [src]
    z1 = I*asinh(3/4)
    z1=iasinh(34)z_{1} = i \operatorname{asinh}{\left(\frac{3}{4} \right)}
    z2 = pi - I*asinh(3/4)
    z2=πiasinh(34)z_{2} = \pi - i \operatorname{asinh}{\left(\frac{3}{4} \right)}
    Сумма и произведение корней [src]
    сумма
    I*asinh(3/4) + pi - I*asinh(3/4)
    (πiasinh(34))+iasinh(34)\left(\pi - i \operatorname{asinh}{\left(\frac{3}{4} \right)}\right) + i \operatorname{asinh}{\left(\frac{3}{4} \right)}
    =
    pi
    π\pi
    произведение
    I*asinh(3/4)*(pi - I*asinh(3/4))
    iasinh(34)(πiasinh(34))i \operatorname{asinh}{\left(\frac{3}{4} \right)} \left(\pi - i \operatorname{asinh}{\left(\frac{3}{4} \right)}\right)
    =
    (pi*I + asinh(3/4))*asinh(3/4)
    (asinh(34)+iπ)asinh(34)\left(\operatorname{asinh}{\left(\frac{3}{4} \right)} + i \pi\right) \operatorname{asinh}{\left(\frac{3}{4} \right)}
    Численный ответ [src]
    z1 = -72.2566310325652 - 0.693147180559945*i
    z2 = -62.8318530717959 + 0.693147180559945*i
    z3 = -65.9734457253857 - 0.693147180559945*i
    z4 = 47.1238898038469 - 0.693147180559945*i
    z5 = 69.1150383789755 + 0.693147180559945*i
    z6 = -53.4070751110265 - 0.693147180559945*i
    z7 = -47.1238898038469 - 0.693147180559945*i
    z8 = -75.398223686155 + 0.693147180559945*i
    z9 = -78.5398163397448 - 0.693147180559945*i
    z10 = -25.1327412287183 + 0.693147180559945*i
    z11 = 15.707963267949 - 0.693147180559945*i
    z12 = 75.398223686155 + 0.693147180559945*i
    z13 = -56.5486677646163 + 0.693147180559945*i
    z14 = -50.2654824574367 + 0.693147180559945*i
    z15 = 50.2654824574367 + 0.693147180559945*i
    z16 = -15.707963267949 - 0.693147180559945*i
    z17 = 37.6991118430775 + 0.693147180559945*i
    z18 = -3.14159265358979 - 0.693147180559945*i
    z19 = 100.530964914873 + 0.693147180559945*i
    z20 = -87.9645943005142 + 0.693147180559945*i
    z21 = 72.2566310325652 - 0.693147180559945*i
    z22 = -9.42477796076938 - 0.693147180559945*i
    z23 = 94.2477796076938 + 0.693147180559945*i
    z24 = 40.8407044966673 - 0.693147180559945*i
    z25 = 91.106186954104 - 0.693147180559945*i
    z26 = 62.8318530717959 + 0.693147180559945*i
    z27 = 9.42477796076938 - 0.693147180559945*i
    z28 = -81.6814089933346 + 0.693147180559945*i
    z29 = 81.6814089933346 + 0.693147180559945*i
    z30 = -12.5663706143592 + 0.693147180559945*i
    z31 = 78.5398163397448 - 0.693147180559945*i
    z32 = 59.6902604182061 - 0.693147180559945*i
    z33 = -37.6991118430775 + 0.693147180559945*i
    z34 = -21.9911485751286 - 0.693147180559945*i
    z35 = -34.5575191894877 - 0.693147180559945*i
    z36 = 84.8230016469244 - 0.693147180559945*i
    z37 = -94.2477796076938 + 0.693147180559945*i
    z38 = 18.8495559215388 + 0.693147180559945*i
    z39 = -28.2743338823081 - 0.693147180559945*i
    z40 = 0.693147180559945*i
    z41 = 65.9734457253857 - 0.693147180559945*i
    z42 = -100.530964914873 + 0.693147180559945*i
    z43 = -84.8230016469244 - 0.693147180559945*i
    z44 = 28.2743338823081 - 0.693147180559945*i
    z45 = -43.9822971502571 + 0.693147180559945*i
    z46 = -97.3893722612836 - 0.693147180559945*i
    z47 = -91.106186954104 - 0.693147180559945*i
    z48 = 12.5663706143592 + 0.693147180559945*i
    z49 = -59.6902604182061 - 0.693147180559945*i
    z50 = 21.9911485751286 - 0.693147180559945*i
    z51 = 53.4070751110265 - 0.693147180559945*i
    z52 = -18.8495559215388 + 0.693147180559945*i
    z53 = -31.4159265358979 + 0.693147180559945*i
    z54 = -69.1150383789755 + 0.693147180559945*i
    z55 = 31.4159265358979 + 0.693147180559945*i
    z56 = 43.9822971502571 + 0.693147180559945*i
    z57 = 56.5486677646163 + 0.693147180559945*i
    z58 = -6.28318530717959 + 0.693147180559945*i
    z59 = 3.14159265358979 - 0.693147180559945*i
    z60 = 25.1327412287183 + 0.693147180559945*i
    z61 = 34.5575191894877 - 0.693147180559945*i
    z62 = 97.3893722612836 - 0.693147180559945*i
    z63 = 87.9645943005142 + 0.693147180559945*i
    z64 = -40.8407044966673 - 0.693147180559945*i
    z65 = 6.28318530717959 + 0.693147180559945*i