3+3х^2=4х (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 3+3х^2=4х
Решение
Подробное решение
Перенесём правую часть уравнения в левую часть уравнения со знаком минус. Уравнение превратится из3 x 2 + 3 = 4 x 3 x^{2} + 3 = 4 x 3 x 2 + 3 = 4 x в− 4 x + ( 3 x 2 + 3 ) = 0 - 4 x + \left(3 x^{2} + 3\right) = 0 − 4 x + ( 3 x 2 + 3 ) = 0 Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 3 a = 3 a = 3 b = − 4 b = -4 b = − 4 c = 3 c = 3 c = 3 , тоD = b^2 - 4 * a * c = (-4)^2 - 4 * (3) * (3) = -20 Т.к. D < 0, то уравнение не имеет вещественных корней, но комплексные корни имеются.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 2 3 + 5 i 3 x_{1} = \frac{2}{3} + \frac{\sqrt{5} i}{3} x 1 = 3 2 + 3 5 i Упростить x 2 = 2 3 − 5 i 3 x_{2} = \frac{2}{3} - \frac{\sqrt{5} i}{3} x 2 = 3 2 − 3 5 i Упростить
График
0 2 4 6 8 -8 -6 -4 -2 -10 10 -500 500
___
2 I*\/ 5
x1 = - - -------
3 3 x 1 = 2 3 − 5 i 3 x_{1} = \frac{2}{3} - \frac{\sqrt{5} i}{3} x 1 = 3 2 − 3 5 i ___
2 I*\/ 5
x2 = - + -------
3 3 x 2 = 2 3 + 5 i 3 x_{2} = \frac{2}{3} + \frac{\sqrt{5} i}{3} x 2 = 3 2 + 3 5 i
Сумма и произведение корней
[src] ___ ___
2 I*\/ 5 2 I*\/ 5
0 + - - ------- + - + -------
3 3 3 3 ( 0 + ( 2 3 − 5 i 3 ) ) + ( 2 3 + 5 i 3 ) \left(0 + \left(\frac{2}{3} - \frac{\sqrt{5} i}{3}\right)\right) + \left(\frac{2}{3} + \frac{\sqrt{5} i}{3}\right) ( 0 + ( 3 2 − 3 5 i ) ) + ( 3 2 + 3 5 i ) / ___\ / ___\
|2 I*\/ 5 | |2 I*\/ 5 |
1*|- - -------|*|- + -------|
\3 3 / \3 3 / 1 ⋅ ( 2 3 − 5 i 3 ) ( 2 3 + 5 i 3 ) 1 \cdot \left(\frac{2}{3} - \frac{\sqrt{5} i}{3}\right) \left(\frac{2}{3} + \frac{\sqrt{5} i}{3}\right) 1 ⋅ ( 3 2 − 3 5 i ) ( 3 2 + 3 5 i )
Теорема Виета
перепишем уравнение3 x 2 + 3 = 4 x 3 x^{2} + 3 = 4 x 3 x 2 + 3 = 4 x изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 − 4 x 3 + 1 = 0 x^{2} - \frac{4 x}{3} + 1 = 0 x 2 − 3 4 x + 1 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = − 4 3 p = - \frac{4}{3} p = − 3 4 q = c a q = \frac{c}{a} q = a c q = 1 q = 1 q = 1 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 4 3 x_{1} + x_{2} = \frac{4}{3} x 1 + x 2 = 3 4 x 1 x 2 = 1 x_{1} x_{2} = 1 x 1 x 2 = 1 x1 = 0.666666666666667 + 0.74535599249993*i x2 = 0.666666666666667 - 0.74535599249993*i