3^x=10 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 3^x=10
Решение
Подробное решение
Дано уравнение:3 x = 10 3^{x} = 10 3 x = 10 или3 x − 10 = 0 3^{x} - 10 = 0 3 x − 10 = 0 или3 x = 10 3^{x} = 10 3 x = 10 или3 x = 10 3^{x} = 10 3 x = 10 - это простейшее показательное ур-ние Сделаем заменуv = 3 x v = 3^{x} v = 3 x получимv − 10 = 0 v - 10 = 0 v − 10 = 0 илиv − 10 = 0 v - 10 = 0 v − 10 = 0 Переносим свободные слагаемые (без v) из левой части в правую, получим:v = 10 v = 10 v = 10 Получим ответ: v = 10 делаем обратную замену3 x = v 3^{x} = v 3 x = v илиx = log ( v ) log ( 3 ) x = \frac{\log{\left(v \right)}}{\log{\left(3 \right)}} x = log ( 3 ) log ( v ) Тогда, окончательный ответx 1 = log ( 10 ) log ( 3 ) = log ( 10 ) log ( 3 ) x_{1} = \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}} = \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}} x 1 = log ( 3 ) log ( 10 ) = log ( 3 ) log ( 10 )
График
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0 1000000
log(10)
x1 = -------
log(3) x 1 = log ( 10 ) log ( 3 ) x_{1} = \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}} x 1 = log ( 3 ) log ( 10 )
Сумма и произведение корней
[src] log(10)
0 + -------
log(3) 0 + log ( 10 ) log ( 3 ) 0 + \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}} 0 + log ( 3 ) log ( 10 ) log ( 10 ) log ( 3 ) \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}} log ( 3 ) log ( 10 ) 1 log ( 10 ) log ( 3 ) 1 \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}} 1 log ( 3 ) log ( 10 ) log ( 10 ) log ( 3 ) \frac{\log{\left(10 \right)}}{\log{\left(3 \right)}} log ( 3 ) log ( 10 )