Решите уравнение 3x-x^3-2=0 (3 х минус х в кубе минус 2 равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

3x-x^3-2=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 3x-x^3-2=0

    Решение

    Вы ввели [src]
           3        
    3*x - x  - 2 = 0
    $$- x^{3} + 3 x - 2 = 0$$
    Подробное решение
    Дано уравнение:
    $$- x^{3} + 3 x - 2 = 0$$
    преобразуем
    $$\left(3 x - \left(x^{3} - 1\right)\right) - 3 = 0$$
    или
    $$\left(3 x - \left(x^{3} - 1\right)\right) + 1 \left(-3\right) = 0$$
    $$3 \left(x - 1\right) - \left(x^{3} - 1^{3}\right) = 0$$
    $$- (x - 1) \left(\left(x^{2} + 1 x\right) + 1^{2}\right) + 3 \left(x - 1\right) = 0$$
    Вынесем общий множитель -1 + x за скобки
    получим:
    $$\left(3 - \left(\left(x^{2} + 1 x\right) + 1^{2}\right)\right) \left(x - 1\right) = 0$$
    или
    $$\left(x - 1\right) \left(- x^{2} - x + 2\right) = 0$$
    тогда:
    $$x_{1} = 1$$
    и также
    получаем ур-ние
    $$- x^{2} - x + 2 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = -1$$
    $$b = -1$$
    $$c = 2$$
    , то
    D = b^2 - 4 * a * c = 

    (-1)^2 - 4 * (-1) * (2) = 9

    Т.к. D > 0, то уравнение имеет два корня.
    x2 = (-b + sqrt(D)) / (2*a)

    x3 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{2} = -2$$
    Упростить
    $$x_{3} = 1$$
    Упростить
    Получаем окончательный ответ для (3*x - x^3 - 1*2) + 0 = 0:
    $$x_{1} = 1$$
    $$x_{2} = -2$$
    $$x_{3} = 1$$
    График
    Быстрый ответ [src]
    x1 = -2
    $$x_{1} = -2$$
    x2 = 1
    $$x_{2} = 1$$
    Сумма и произведение корней [src]
    сумма
    0 - 2 + 1
    $$\left(-2 + 0\right) + 1$$
    =
    -1
    $$-1$$
    произведение
    1*-2*1
    $$1 \left(-2\right) 1$$
    =
    -2
    $$-2$$
    Теорема Виета
    перепишем уравнение
    $$- x^{3} + 3 x - 2 = 0$$
    из
    $$a x^{3} + b x^{2} + c x + d = 0$$
    как приведённое кубическое уравнение
    $$x^{3} + \frac{b x^{2}}{a} + \frac{c x}{a} + \frac{d}{a} = 0$$
    $$x^{3} - 3 x + 2 = 0$$
    $$p x^{2} + q x + v + x^{3} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = 0$$
    $$q = \frac{c}{a}$$
    $$q = -3$$
    $$v = \frac{d}{a}$$
    $$v = 2$$
    Формулы Виета
    $$x_{1} + x_{2} + x_{3} = - p$$
    $$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
    $$x_{1} x_{2} x_{3} = v$$
    $$x_{1} + x_{2} + x_{3} = 0$$
    $$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = -3$$
    $$x_{1} x_{2} x_{3} = 2$$
    Численный ответ [src]
    x1 = -2.0
    x2 = 1.0
    График
    3x-x^3-2=0 (уравнение) /media/krcore-image-pods/hash/equation/b/e8/3842e0e8182921ef9ddc47e2476da.png