ysinx-ylny=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: ysinx-ylny=0

    Решение

    Вы ввели [src]
    y*sin(x) - y*log(y) = 0
    ylog(y)+ysin(x)=0- y \log{\left(y \right)} + y \sin{\left(x \right)} = 0
    Подробное решение
    Дано уравнение
    ylog(y)+ysin(x)=0- y \log{\left(y \right)} + y \sin{\left(x \right)} = 0
    - это простейшее тригонометрическое ур-ние
    Перенесём -y*log(y) в правую часть ур-ния

    с изменением знака при -y*log(y)

    Получим:
    ysin(x)=ylog(y)y \sin{\left(x \right)} = y \log{\left(y \right)}
    Разделим обе части ур-ния на y

    Ур-ние превратится в
    sin(x)=log(y)\sin{\left(x \right)} = \log{\left(y \right)}
    Это ур-ние преобразуется в
    x=2πn+asin(log(y))x = 2 \pi n + \operatorname{asin}{\left(\log{\left(y \right)} \right)}
    x=2πnasin(log(y))+πx = 2 \pi n - \operatorname{asin}{\left(\log{\left(y \right)} \right)} + \pi
    Или
    x=2πn+asin(log(y))x = 2 \pi n + \operatorname{asin}{\left(\log{\left(y \right)} \right)}
    x=2πnasin(log(y))+πx = 2 \pi n - \operatorname{asin}{\left(\log{\left(y \right)} \right)} + \pi
    , где n - любое целое число
    График
    Быстрый ответ [src]
    x1 = pi - re(asin(log(y))) - I*im(asin(log(y)))
    x1=re(asin(log(y)))iim(asin(log(y)))+πx_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} + \pi
    x2 = I*im(asin(log(y))) + re(asin(log(y)))
    x2=re(asin(log(y)))+iim(asin(log(y)))x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)}
    Сумма и произведение корней [src]
    сумма
    pi - re(asin(log(y))) - I*im(asin(log(y))) + I*im(asin(log(y))) + re(asin(log(y)))
    (re(asin(log(y)))+iim(asin(log(y))))+(re(asin(log(y)))iim(asin(log(y)))+π)\left(\operatorname{re}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} + \pi\right)
    =
    pi
    π\pi
    произведение
    (pi - re(asin(log(y))) - I*im(asin(log(y))))*(I*im(asin(log(y))) + re(asin(log(y))))
    (re(asin(log(y)))+iim(asin(log(y))))(re(asin(log(y)))iim(asin(log(y)))+π)\left(\operatorname{re}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} + \pi\right)
    =
    -(I*im(asin(log(y))) + re(asin(log(y))))*(-pi + I*im(asin(log(y))) + re(asin(log(y))))
    (re(asin(log(y)))+iim(asin(log(y))))(re(asin(log(y)))+iim(asin(log(y)))π)- \left(\operatorname{re}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(\log{\left(y \right)} \right)}\right)} - \pi\right)