y 1 = 3 77 y_{1} = \sqrt[77]{3} y 1 = 77 3 77___ /pi\ 77___ /pi\
y2 = - \/ 3 *cos|--| - I*\/ 3 *sin|--|
\77/ \77/ y 2 = − 3 77 cos ( π 77 ) − 3 77 i sin ( π 77 ) y_{2} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )} y 2 = − 77 3 cos ( 77 π ) − 77 3 i sin ( 77 π ) 77___ /pi\ 77___ /pi\
y3 = - \/ 3 *cos|--| + I*\/ 3 *sin|--|
\77/ \77/ y 3 = − 3 77 cos ( π 77 ) + 3 77 i sin ( π 77 ) y_{3} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )} y 3 = − 77 3 cos ( 77 π ) + 77 3 i sin ( 77 π ) 77___ /2*pi\ 77___ /2*pi\
y4 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 77 / \ 77 / y 4 = 3 77 cos ( 2 π 77 ) − 3 77 i sin ( 2 π 77 ) y_{4} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )} y 4 = 77 3 cos ( 77 2 π ) − 77 3 i sin ( 77 2 π ) 77___ /2*pi\ 77___ /2*pi\
y5 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 77 / \ 77 / y 5 = 3 77 cos ( 2 π 77 ) + 3 77 i sin ( 2 π 77 ) y_{5} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )} y 5 = 77 3 cos ( 77 2 π ) + 77 3 i sin ( 77 2 π ) 77___ /3*pi\ 77___ /3*pi\
y6 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 77 / \ 77 / y 6 = − 3 77 cos ( 3 π 77 ) − 3 77 i sin ( 3 π 77 ) y_{6} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )} y 6 = − 77 3 cos ( 77 3 π ) − 77 3 i sin ( 77 3 π ) 77___ /3*pi\ 77___ /3*pi\
y7 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 77 / \ 77 / y 7 = − 3 77 cos ( 3 π 77 ) + 3 77 i sin ( 3 π 77 ) y_{7} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )} y 7 = − 77 3 cos ( 77 3 π ) + 77 3 i sin ( 77 3 π ) 77___ /4*pi\ 77___ /4*pi\
y8 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 77 / \ 77 / y 8 = 3 77 cos ( 4 π 77 ) − 3 77 i sin ( 4 π 77 ) y_{8} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )} y 8 = 77 3 cos ( 77 4 π ) − 77 3 i sin ( 77 4 π ) 77___ /4*pi\ 77___ /4*pi\
y9 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 77 / \ 77 / y 9 = 3 77 cos ( 4 π 77 ) + 3 77 i sin ( 4 π 77 ) y_{9} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )} y 9 = 77 3 cos ( 77 4 π ) + 77 3 i sin ( 77 4 π ) 77___ /5*pi\ 77___ /5*pi\
y10 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 77 / \ 77 / y 10 = − 3 77 cos ( 5 π 77 ) − 3 77 i sin ( 5 π 77 ) y_{10} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )} y 10 = − 77 3 cos ( 77 5 π ) − 77 3 i sin ( 77 5 π ) 77___ /5*pi\ 77___ /5*pi\
y11 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 77 / \ 77 / y 11 = − 3 77 cos ( 5 π 77 ) + 3 77 i sin ( 5 π 77 ) y_{11} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )} y 11 = − 77 3 cos ( 77 5 π ) + 77 3 i sin ( 77 5 π ) 77___ /6*pi\ 77___ /6*pi\
y12 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 77 / \ 77 / y 12 = 3 77 cos ( 6 π 77 ) − 3 77 i sin ( 6 π 77 ) y_{12} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )} y 12 = 77 3 cos ( 77 6 π ) − 77 3 i sin ( 77 6 π ) 77___ /6*pi\ 77___ /6*pi\
y13 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 77 / \ 77 / y 13 = 3 77 cos ( 6 π 77 ) + 3 77 i sin ( 6 π 77 ) y_{13} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )} y 13 = 77 3 cos ( 77 6 π ) + 77 3 i sin ( 77 6 π ) 77___ /pi\ 77___ /pi\
y14 = - \/ 3 *cos|--| - I*\/ 3 *sin|--|
\11/ \11/ y 14 = − 3 77 cos ( π 11 ) − 3 77 i sin ( π 11 ) y_{14} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )} y 14 = − 77 3 cos ( 11 π ) − 77 3 i sin ( 11 π ) 77___ /pi\ 77___ /pi\
y15 = - \/ 3 *cos|--| + I*\/ 3 *sin|--|
\11/ \11/ y 15 = − 3 77 cos ( π 11 ) + 3 77 i sin ( π 11 ) y_{15} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )} y 15 = − 77 3 cos ( 11 π ) + 77 3 i sin ( 11 π ) 77___ /8*pi\ 77___ /8*pi\
y16 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 77 / \ 77 / y 16 = 3 77 cos ( 8 π 77 ) − 3 77 i sin ( 8 π 77 ) y_{16} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )} y 16 = 77 3 cos ( 77 8 π ) − 77 3 i sin ( 77 8 π ) 77___ /8*pi\ 77___ /8*pi\
y17 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 77 / \ 77 / y 17 = 3 77 cos ( 8 π 77 ) + 3 77 i sin ( 8 π 77 ) y_{17} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )} y 17 = 77 3 cos ( 77 8 π ) + 77 3 i sin ( 77 8 π ) 77___ /9*pi\ 77___ /9*pi\
y18 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 77 / \ 77 / y 18 = − 3 77 cos ( 9 π 77 ) − 3 77 i sin ( 9 π 77 ) y_{18} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )} y 18 = − 77 3 cos ( 77 9 π ) − 77 3 i sin ( 77 9 π ) 77___ /9*pi\ 77___ /9*pi\
y19 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 77 / \ 77 / y 19 = − 3 77 cos ( 9 π 77 ) + 3 77 i sin ( 9 π 77 ) y_{19} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )} y 19 = − 77 3 cos ( 77 9 π ) + 77 3 i sin ( 77 9 π ) 77___ /10*pi\ 77___ /10*pi\
y20 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 20 = 3 77 cos ( 10 π 77 ) − 3 77 i sin ( 10 π 77 ) y_{20} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )} y 20 = 77 3 cos ( 77 10 π ) − 77 3 i sin ( 77 10 π ) 77___ /10*pi\ 77___ /10*pi\
y21 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 21 = 3 77 cos ( 10 π 77 ) + 3 77 i sin ( 10 π 77 ) y_{21} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )} y 21 = 77 3 cos ( 77 10 π ) + 77 3 i sin ( 77 10 π ) 77___ /pi\ 77___ /pi\
y22 = - \/ 3 *cos|--| - I*\/ 3 *sin|--|
\7 / \7 / y 22 = − 3 77 cos ( π 7 ) − 3 77 i sin ( π 7 ) y_{22} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )} y 22 = − 77 3 cos ( 7 π ) − 77 3 i sin ( 7 π ) 77___ /pi\ 77___ /pi\
y23 = - \/ 3 *cos|--| + I*\/ 3 *sin|--|
\7 / \7 / y 23 = − 3 77 cos ( π 7 ) + 3 77 i sin ( π 7 ) y_{23} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )} y 23 = − 77 3 cos ( 7 π ) + 77 3 i sin ( 7 π ) 77___ /12*pi\ 77___ /12*pi\
y24 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 24 = 3 77 cos ( 12 π 77 ) − 3 77 i sin ( 12 π 77 ) y_{24} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )} y 24 = 77 3 cos ( 77 12 π ) − 77 3 i sin ( 77 12 π ) 77___ /12*pi\ 77___ /12*pi\
y25 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 25 = 3 77 cos ( 12 π 77 ) + 3 77 i sin ( 12 π 77 ) y_{25} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )} y 25 = 77 3 cos ( 77 12 π ) + 77 3 i sin ( 77 12 π ) 77___ /13*pi\ 77___ /13*pi\
y26 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 26 = − 3 77 cos ( 13 π 77 ) − 3 77 i sin ( 13 π 77 ) y_{26} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )} y 26 = − 77 3 cos ( 77 13 π ) − 77 3 i sin ( 77 13 π ) 77___ /13*pi\ 77___ /13*pi\
y27 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 27 = − 3 77 cos ( 13 π 77 ) + 3 77 i sin ( 13 π 77 ) y_{27} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )} y 27 = − 77 3 cos ( 77 13 π ) + 77 3 i sin ( 77 13 π ) 77___ /2*pi\ 77___ /2*pi\
y28 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 11 / \ 11 / y 28 = 3 77 cos ( 2 π 11 ) − 3 77 i sin ( 2 π 11 ) y_{28} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )} y 28 = 77 3 cos ( 11 2 π ) − 77 3 i sin ( 11 2 π ) 77___ /2*pi\ 77___ /2*pi\
y29 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 11 / \ 11 / y 29 = 3 77 cos ( 2 π 11 ) + 3 77 i sin ( 2 π 11 ) y_{29} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )} y 29 = 77 3 cos ( 11 2 π ) + 77 3 i sin ( 11 2 π ) 77___ /15*pi\ 77___ /15*pi\
y30 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 30 = − 3 77 cos ( 15 π 77 ) − 3 77 i sin ( 15 π 77 ) y_{30} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )} y 30 = − 77 3 cos ( 77 15 π ) − 77 3 i sin ( 77 15 π ) 77___ /15*pi\ 77___ /15*pi\
y31 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 31 = − 3 77 cos ( 15 π 77 ) + 3 77 i sin ( 15 π 77 ) y_{31} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )} y 31 = − 77 3 cos ( 77 15 π ) + 77 3 i sin ( 77 15 π ) 77___ /16*pi\ 77___ /16*pi\
y32 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 32 = 3 77 cos ( 16 π 77 ) − 3 77 i sin ( 16 π 77 ) y_{32} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )} y 32 = 77 3 cos ( 77 16 π ) − 77 3 i sin ( 77 16 π ) 77___ /16*pi\ 77___ /16*pi\
y33 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 33 = 3 77 cos ( 16 π 77 ) + 3 77 i sin ( 16 π 77 ) y_{33} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )} y 33 = 77 3 cos ( 77 16 π ) + 77 3 i sin ( 77 16 π ) 77___ /17*pi\ 77___ /17*pi\
y34 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 34 = − 3 77 cos ( 17 π 77 ) − 3 77 i sin ( 17 π 77 ) y_{34} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )} y 34 = − 77 3 cos ( 77 17 π ) − 77 3 i sin ( 77 17 π ) 77___ /17*pi\ 77___ /17*pi\
y35 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 35 = − 3 77 cos ( 17 π 77 ) + 3 77 i sin ( 17 π 77 ) y_{35} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )} y 35 = − 77 3 cos ( 77 17 π ) + 77 3 i sin ( 77 17 π ) 77___ /18*pi\ 77___ /18*pi\
y36 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 36 = 3 77 cos ( 18 π 77 ) − 3 77 i sin ( 18 π 77 ) y_{36} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )} y 36 = 77 3 cos ( 77 18 π ) − 77 3 i sin ( 77 18 π ) 77___ /18*pi\ 77___ /18*pi\
y37 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 37 = 3 77 cos ( 18 π 77 ) + 3 77 i sin ( 18 π 77 ) y_{37} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )} y 37 = 77 3 cos ( 77 18 π ) + 77 3 i sin ( 77 18 π ) 77___ /19*pi\ 77___ /19*pi\
y38 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 38 = − 3 77 cos ( 19 π 77 ) − 3 77 i sin ( 19 π 77 ) y_{38} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )} y 38 = − 77 3 cos ( 77 19 π ) − 77 3 i sin ( 77 19 π ) 77___ /19*pi\ 77___ /19*pi\
y39 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 39 = − 3 77 cos ( 19 π 77 ) + 3 77 i sin ( 19 π 77 ) y_{39} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )} y 39 = − 77 3 cos ( 77 19 π ) + 77 3 i sin ( 77 19 π ) 77___ /20*pi\ 77___ /20*pi\
y40 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 40 = 3 77 cos ( 20 π 77 ) − 3 77 i sin ( 20 π 77 ) y_{40} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )} y 40 = 77 3 cos ( 77 20 π ) − 77 3 i sin ( 77 20 π ) 77___ /20*pi\ 77___ /20*pi\
y41 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 41 = 3 77 cos ( 20 π 77 ) + 3 77 i sin ( 20 π 77 ) y_{41} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )} y 41 = 77 3 cos ( 77 20 π ) + 77 3 i sin ( 77 20 π ) 77___ /3*pi\ 77___ /3*pi\
y42 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 11 / \ 11 / y 42 = − 3 77 cos ( 3 π 11 ) − 3 77 i sin ( 3 π 11 ) y_{42} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )} y 42 = − 77 3 cos ( 11 3 π ) − 77 3 i sin ( 11 3 π ) 77___ /3*pi\ 77___ /3*pi\
y43 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 11 / \ 11 / y 43 = − 3 77 cos ( 3 π 11 ) + 3 77 i sin ( 3 π 11 ) y_{43} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )} y 43 = − 77 3 cos ( 11 3 π ) + 77 3 i sin ( 11 3 π ) 77___ /2*pi\ 77___ /2*pi\
y44 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 7 / \ 7 / y 44 = 3 77 cos ( 2 π 7 ) − 3 77 i sin ( 2 π 7 ) y_{44} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )} y 44 = 77 3 cos ( 7 2 π ) − 77 3 i sin ( 7 2 π ) 77___ /2*pi\ 77___ /2*pi\
y45 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 7 / \ 7 / y 45 = 3 77 cos ( 2 π 7 ) + 3 77 i sin ( 2 π 7 ) y_{45} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )} y 45 = 77 3 cos ( 7 2 π ) + 77 3 i sin ( 7 2 π ) 77___ /23*pi\ 77___ /23*pi\
y46 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 46 = − 3 77 cos ( 23 π 77 ) − 3 77 i sin ( 23 π 77 ) y_{46} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )} y 46 = − 77 3 cos ( 77 23 π ) − 77 3 i sin ( 77 23 π ) 77___ /23*pi\ 77___ /23*pi\
y47 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 47 = − 3 77 cos ( 23 π 77 ) + 3 77 i sin ( 23 π 77 ) y_{47} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )} y 47 = − 77 3 cos ( 77 23 π ) + 77 3 i sin ( 77 23 π ) 77___ /24*pi\ 77___ /24*pi\
y48 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 48 = 3 77 cos ( 24 π 77 ) − 3 77 i sin ( 24 π 77 ) y_{48} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )} y 48 = 77 3 cos ( 77 24 π ) − 77 3 i sin ( 77 24 π ) 77___ /24*pi\ 77___ /24*pi\
y49 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 49 = 3 77 cos ( 24 π 77 ) + 3 77 i sin ( 24 π 77 ) y_{49} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )} y 49 = 77 3 cos ( 77 24 π ) + 77 3 i sin ( 77 24 π ) 77___ /25*pi\ 77___ /25*pi\
y50 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 50 = − 3 77 cos ( 25 π 77 ) − 3 77 i sin ( 25 π 77 ) y_{50} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )} y 50 = − 77 3 cos ( 77 25 π ) − 77 3 i sin ( 77 25 π ) 77___ /25*pi\ 77___ /25*pi\
y51 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 51 = − 3 77 cos ( 25 π 77 ) + 3 77 i sin ( 25 π 77 ) y_{51} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )} y 51 = − 77 3 cos ( 77 25 π ) + 77 3 i sin ( 77 25 π ) 77___ /26*pi\ 77___ /26*pi\
y52 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 52 = 3 77 cos ( 26 π 77 ) − 3 77 i sin ( 26 π 77 ) y_{52} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )} y 52 = 77 3 cos ( 77 26 π ) − 77 3 i sin ( 77 26 π ) 77___ /26*pi\ 77___ /26*pi\
y53 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 53 = 3 77 cos ( 26 π 77 ) + 3 77 i sin ( 26 π 77 ) y_{53} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )} y 53 = 77 3 cos ( 77 26 π ) + 77 3 i sin ( 77 26 π ) 77___ /27*pi\ 77___ /27*pi\
y54 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 54 = − 3 77 cos ( 27 π 77 ) − 3 77 i sin ( 27 π 77 ) y_{54} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )} y 54 = − 77 3 cos ( 77 27 π ) − 77 3 i sin ( 77 27 π ) 77___ /27*pi\ 77___ /27*pi\
y55 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 55 = − 3 77 cos ( 27 π 77 ) + 3 77 i sin ( 27 π 77 ) y_{55} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )} y 55 = − 77 3 cos ( 77 27 π ) + 77 3 i sin ( 77 27 π ) 77___ /4*pi\ 77___ /4*pi\
y56 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 11 / \ 11 / y 56 = 3 77 cos ( 4 π 11 ) − 3 77 i sin ( 4 π 11 ) y_{56} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )} y 56 = 77 3 cos ( 11 4 π ) − 77 3 i sin ( 11 4 π ) 77___ /4*pi\ 77___ /4*pi\
y57 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 11 / \ 11 / y 57 = 3 77 cos ( 4 π 11 ) + 3 77 i sin ( 4 π 11 ) y_{57} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )} y 57 = 77 3 cos ( 11 4 π ) + 77 3 i sin ( 11 4 π ) 77___ /29*pi\ 77___ /29*pi\
y58 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 58 = − 3 77 cos ( 29 π 77 ) − 3 77 i sin ( 29 π 77 ) y_{58} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )} y 58 = − 77 3 cos ( 77 29 π ) − 77 3 i sin ( 77 29 π ) 77___ /29*pi\ 77___ /29*pi\
y59 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 59 = − 3 77 cos ( 29 π 77 ) + 3 77 i sin ( 29 π 77 ) y_{59} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )} y 59 = − 77 3 cos ( 77 29 π ) + 77 3 i sin ( 77 29 π ) 77___ /30*pi\ 77___ /30*pi\
y60 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 60 = 3 77 cos ( 30 π 77 ) − 3 77 i sin ( 30 π 77 ) y_{60} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )} y 60 = 77 3 cos ( 77 30 π ) − 77 3 i sin ( 77 30 π ) 77___ /30*pi\ 77___ /30*pi\
y61 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 61 = 3 77 cos ( 30 π 77 ) + 3 77 i sin ( 30 π 77 ) y_{61} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )} y 61 = 77 3 cos ( 77 30 π ) + 77 3 i sin ( 77 30 π ) 77___ /31*pi\ 77___ /31*pi\
y62 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 62 = − 3 77 cos ( 31 π 77 ) − 3 77 i sin ( 31 π 77 ) y_{62} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )} y 62 = − 77 3 cos ( 77 31 π ) − 77 3 i sin ( 77 31 π ) 77___ /31*pi\ 77___ /31*pi\
y63 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 63 = − 3 77 cos ( 31 π 77 ) + 3 77 i sin ( 31 π 77 ) y_{63} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )} y 63 = − 77 3 cos ( 77 31 π ) + 77 3 i sin ( 77 31 π ) 77___ /32*pi\ 77___ /32*pi\
y64 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 64 = 3 77 cos ( 32 π 77 ) − 3 77 i sin ( 32 π 77 ) y_{64} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )} y 64 = 77 3 cos ( 77 32 π ) − 77 3 i sin ( 77 32 π ) 77___ /32*pi\ 77___ /32*pi\
y65 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 65 = 3 77 cos ( 32 π 77 ) + 3 77 i sin ( 32 π 77 ) y_{65} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )} y 65 = 77 3 cos ( 77 32 π ) + 77 3 i sin ( 77 32 π ) 77___ /3*pi\ 77___ /3*pi\
y66 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 7 / \ 7 / y 66 = − 3 77 cos ( 3 π 7 ) − 3 77 i sin ( 3 π 7 ) y_{66} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )} y 66 = − 77 3 cos ( 7 3 π ) − 77 3 i sin ( 7 3 π ) 77___ /3*pi\ 77___ /3*pi\
y67 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 7 / \ 7 / y 67 = − 3 77 cos ( 3 π 7 ) + 3 77 i sin ( 3 π 7 ) y_{67} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )} y 67 = − 77 3 cos ( 7 3 π ) + 77 3 i sin ( 7 3 π ) 77___ /34*pi\ 77___ /34*pi\
y68 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 68 = 3 77 cos ( 34 π 77 ) − 3 77 i sin ( 34 π 77 ) y_{68} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )} y 68 = 77 3 cos ( 77 34 π ) − 77 3 i sin ( 77 34 π ) 77___ /34*pi\ 77___ /34*pi\
y69 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 69 = 3 77 cos ( 34 π 77 ) + 3 77 i sin ( 34 π 77 ) y_{69} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )} y 69 = 77 3 cos ( 77 34 π ) + 77 3 i sin ( 77 34 π ) 77___ /5*pi\ 77___ /5*pi\
y70 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
\ 11 / \ 11 / y 70 = − 3 77 cos ( 5 π 11 ) − 3 77 i sin ( 5 π 11 ) y_{70} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )} y 70 = − 77 3 cos ( 11 5 π ) − 77 3 i sin ( 11 5 π ) 77___ /5*pi\ 77___ /5*pi\
y71 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
\ 11 / \ 11 / y 71 = − 3 77 cos ( 5 π 11 ) + 3 77 i sin ( 5 π 11 ) y_{71} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )} y 71 = − 77 3 cos ( 11 5 π ) + 77 3 i sin ( 11 5 π ) 77___ /36*pi\ 77___ /36*pi\
y72 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 72 = 3 77 cos ( 36 π 77 ) − 3 77 i sin ( 36 π 77 ) y_{72} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )} y 72 = 77 3 cos ( 77 36 π ) − 77 3 i sin ( 77 36 π ) 77___ /36*pi\ 77___ /36*pi\
y73 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 73 = 3 77 cos ( 36 π 77 ) + 3 77 i sin ( 36 π 77 ) y_{73} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )} y 73 = 77 3 cos ( 77 36 π ) + 77 3 i sin ( 77 36 π ) 77___ /37*pi\ 77___ /37*pi\
y74 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 74 = − 3 77 cos ( 37 π 77 ) − 3 77 i sin ( 37 π 77 ) y_{74} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )} y 74 = − 77 3 cos ( 77 37 π ) − 77 3 i sin ( 77 37 π ) 77___ /37*pi\ 77___ /37*pi\
y75 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 75 = − 3 77 cos ( 37 π 77 ) + 3 77 i sin ( 37 π 77 ) y_{75} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )} y 75 = − 77 3 cos ( 77 37 π ) + 77 3 i sin ( 77 37 π ) 77___ /38*pi\ 77___ /38*pi\
y76 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 76 = 3 77 cos ( 38 π 77 ) − 3 77 i sin ( 38 π 77 ) y_{76} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )} y 76 = 77 3 cos ( 77 38 π ) − 77 3 i sin ( 77 38 π ) 77___ /38*pi\ 77___ /38*pi\
y77 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
\ 77 / \ 77 / y 77 = 3 77 cos ( 38 π 77 ) + 3 77 i sin ( 38 π 77 ) y_{77} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )} y 77 = 77 3 cos ( 77 38 π ) + 77 3 i sin ( 77 38 π ) y1 = 0.931107011136 + 0.402475033223*i y2 = -0.913915755741 + 0.440118631693*i y3 = 1.01099472902 + 0.082680568804*i y4 = 0.265868074001 + 0.978907853571*i y5 = 0.960814280971 + 0.325241965369*i y6 = -0.973280850592 - 0.285781042803*i y7 = 0.752899998689 + 0.679770557269*i y8 = 0.895203377764 - 0.477029696136*i y9 = -0.599574945577 - 0.818203094098*i y10 = 0.421384510696 + 0.922703372*i y11 = -0.830263301045 + 0.582760044524*i y12 = 1.00089149353 + 0.164810912064*i y13 = -1.01352580204 + 0.0413747164681*i y14 = 0.265868074001 - 0.978907853571*i y15 = -0.144359897003 + 1.00404513778*i y16 = 0.495191279277 + 0.885286403083*i y17 = 0.632449326234 + 0.793066370679*i y18 = 0.185193342114 - 0.997321334672*i y19 = -0.875001022112 - 0.513146791726*i y20 = -0.225718551184 - 0.988937588631*i y21 = 0.853342313611 - 0.548409805124*i y22 = 0.565702631595 - 0.841977999215*i y23 = 0.495191279277 - 0.885286403083*i y24 = 1.01099472902 - 0.082680568804*i y25 = 0.103286179091 + 1.00909780684*i y26 = 0.694987174954 - 0.738877016293*i y27 = 0.98412749029 - 0.245844465896*i y28 = -0.993336146902 + 0.205498705137*i y29 = 0.895203377764 + 0.477029696136*i y30 = -0.780000314694 - 0.648495125373*i y31 = -0.383398068332 - 0.939123176029*i y32 = -0.946748530802 + 0.364161554781*i y33 = 0.565702631595 + 0.841977999215*i y34 = 0.185193342114 + 0.997321334672*i y35 = -0.0620405515259 - 1.01247093219*i y36 = 0.98412749029 + 0.245844465896*i y37 = 0.103286179091 - 1.00909780684*i y38 = -0.0620405515259 + 1.01247093219*i y39 = 0.344773497721 + 0.953979902212*i y40 = 0.853342313611 + 0.548409805124*i y41 = -0.305575085648 + 0.967248822996*i y42 = -0.664271057403 + 0.766609666553*i y43 = 0.020691663586 + 1.01415889959*i y44 = 0.752899998689 - 0.679770557269*i y45 = 0.931107011136 - 0.402475033223*i y46 = 0.805802397152 + 0.616140337341*i y47 = 0.694987174954 + 0.738877016293*i y48 = 0.421384510696 - 0.922703372*i y49 = -0.530888761411 + 0.864351515046*i y50 = 0.344773497721 - 0.953979902212*i y51 = -0.664271057403 - 0.766609666553*i y52 = 1.00089149353 - 0.164810912064*i y53 = -0.780000314694 + 0.648495125373*i y54 = -0.973280850592 + 0.285781042803*i y55 = -0.830263301045 - 0.582760044524*i y56 = -0.724546554939 - 0.709914578158*i y57 = -0.913915755741 - 0.440118631693*i y58 = -0.383398068332 + 0.939123176029*i y59 = 0.805802397152 - 0.616140337341*i y60 = -1.00678095504 - 0.123848807493*i y61 = -0.993336146902 - 0.205498705137*i y62 = -0.305575085648 - 0.967248822996*i y63 = -1.01352580204 - 0.0413747164681*i y64 = 0.632449326234 - 0.793066370679*i y65 = 0.020691663586 - 1.01415889959*i y66 = 0.960814280971 - 0.325241965369*i y67 = -1.00678095504 + 0.123848807493*i y68 = -0.458669600129 - 0.90474781927*i y69 = -0.144359897003 - 1.00404513778*i y70 = -0.458669600129 + 0.90474781927*i y71 = -0.599574945577 + 0.818203094098*i y72 = -0.946748530802 - 0.364161554781*i y73 = -0.875001022112 + 0.513146791726*i y74 = -0.225718551184 + 0.988937588631*i y75 = -0.724546554939 + 0.709914578158*i y76 = -0.530888761411 - 0.864351515046*i