Решите уравнение y^77=3 (у в степени 77 равно 3) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

y^77=3 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: y^77=3

    Решение

    Вы ввели [src]
     77    
    y   = 3
    $$y^{77} = 3$$
    Подробное решение
    Дано уравнение
    $$y^{77} = 3$$
    Т.к. степень в ур-нии равна = 77 - не содержит чётного числа в числителе, то
    ур-ние будет иметь один действительный корень.
    Извлечём корень 77-й степени из обеих частей ур-ния:
    Получим:
    $$\sqrt[77]{y^{77}} = \sqrt[77]{3}$$
    или
    $$y = \sqrt[77]{3}$$
    Раскрываем скобочки в правой части ур-ния
    y = 3^1/77

    Получим ответ: y = 3^(1/77)

    Остальные 76 корня(ей) являются комплексными.
    сделаем замену:
    $$z = y$$
    тогда ур-ние будет таким:
    $$z^{77} = 3$$
    Любое комплексное число можно представить так:
    $$z = r e^{i p}$$
    подставляем в уравнение
    $$r^{77} e^{77 i p} = 3$$
    где
    $$r = \sqrt[77]{3}$$
    - модуль комплексного числа
    Подставляем r:
    $$e^{77 i p} = 1$$
    Используя формулу Эйлера, найдём корни для p
    $$i \sin{\left (77 p \right )} + \cos{\left (77 p \right )} = 1$$
    значит
    $$\cos{\left (77 p \right )} = 1$$
    и
    $$\sin{\left (77 p \right )} = 0$$
    тогда
    $$p = \frac{2 \pi}{77} N$$
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    $$z_{1} = \sqrt[77]{3}$$
    $$z_{2} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}$$
    $$z_{3} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}$$
    $$z_{4} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}$$
    $$z_{5} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}$$
    $$z_{6} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}$$
    $$z_{7} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}$$
    $$z_{8} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}$$
    $$z_{9} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}$$
    $$z_{10} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}$$
    $$z_{11} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}$$
    $$z_{12} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}$$
    $$z_{13} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}$$
    $$z_{14} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}$$
    $$z_{15} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}$$
    $$z_{16} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}$$
    $$z_{17} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}$$
    $$z_{18} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}$$
    $$z_{19} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}$$
    $$z_{20} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}$$
    $$z_{21} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}$$
    $$z_{22} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}$$
    $$z_{23} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}$$
    $$z_{24} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}$$
    $$z_{25} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}$$
    $$z_{26} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}$$
    $$z_{27} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}$$
    $$z_{28} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}$$
    $$z_{29} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}$$
    $$z_{30} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}$$
    $$z_{31} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}$$
    $$z_{32} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}$$
    $$z_{33} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}$$
    $$z_{34} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}$$
    $$z_{35} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}$$
    $$z_{36} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}$$
    $$z_{37} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}$$
    $$z_{38} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}$$
    $$z_{39} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}$$
    $$z_{40} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}$$
    $$z_{41} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}$$
    $$z_{42} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}$$
    $$z_{43} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}$$
    $$z_{44} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}$$
    $$z_{45} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}$$
    $$z_{46} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}$$
    $$z_{47} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}$$
    $$z_{48} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}$$
    $$z_{49} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}$$
    $$z_{50} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}$$
    $$z_{51} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}$$
    $$z_{52} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}$$
    $$z_{53} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}$$
    $$z_{54} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}$$
    $$z_{55} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}$$
    $$z_{56} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}$$
    $$z_{57} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}$$
    $$z_{58} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}$$
    $$z_{59} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}$$
    $$z_{60} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}$$
    $$z_{61} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}$$
    $$z_{62} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}$$
    $$z_{63} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}$$
    $$z_{64} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}$$
    $$z_{65} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}$$
    $$z_{66} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}$$
    $$z_{67} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}$$
    $$z_{68} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}$$
    $$z_{69} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}$$
    $$z_{70} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}$$
    $$z_{71} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}$$
    $$z_{72} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}$$
    $$z_{73} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}$$
    $$z_{74} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}$$
    $$z_{75} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}$$
    $$z_{76} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}$$
    $$z_{77} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}$$
    делаем обратную замену
    $$z = y$$
    $$y = z$$

    Тогда, окончательный ответ:
    $$y_{1} = \sqrt[77]{3}$$
    $$y_{2} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}$$
    $$y_{3} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}$$
    $$y_{4} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}$$
    $$y_{5} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}$$
    $$y_{6} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}$$
    $$y_{7} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}$$
    $$y_{8} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}$$
    $$y_{9} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}$$
    $$y_{10} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}$$
    $$y_{11} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}$$
    $$y_{12} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}$$
    $$y_{13} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}$$
    $$y_{14} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}$$
    $$y_{15} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}$$
    $$y_{16} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}$$
    $$y_{17} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}$$
    $$y_{18} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}$$
    $$y_{19} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}$$
    $$y_{20} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}$$
    $$y_{21} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}$$
    $$y_{22} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}$$
    $$y_{23} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}$$
    $$y_{24} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}$$
    $$y_{25} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}$$
    $$y_{26} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}$$
    $$y_{27} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}$$
    $$y_{28} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}$$
    $$y_{29} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}$$
    $$y_{30} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}$$
    $$y_{31} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}$$
    $$y_{32} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}$$
    $$y_{33} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}$$
    $$y_{34} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}$$
    $$y_{35} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}$$
    $$y_{36} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}$$
    $$y_{37} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}$$
    $$y_{38} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}$$
    $$y_{39} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}$$
    $$y_{40} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}$$
    $$y_{41} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}$$
    $$y_{42} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}$$
    $$y_{43} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}$$
    $$y_{44} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}$$
    $$y_{45} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}$$
    $$y_{46} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}$$
    $$y_{47} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}$$
    $$y_{48} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}$$
    $$y_{49} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}$$
    $$y_{50} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}$$
    $$y_{51} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}$$
    $$y_{52} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}$$
    $$y_{53} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}$$
    $$y_{54} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}$$
    $$y_{55} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}$$
    $$y_{56} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}$$
    $$y_{57} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}$$
    $$y_{58} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}$$
    $$y_{59} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}$$
    $$y_{60} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}$$
    $$y_{61} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}$$
    $$y_{62} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}$$
    $$y_{63} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}$$
    $$y_{64} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}$$
    $$y_{65} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}$$
    $$y_{66} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}$$
    $$y_{67} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}$$
    $$y_{68} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}$$
    $$y_{69} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}$$
    $$y_{70} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}$$
    $$y_{71} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}$$
    $$y_{72} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}$$
    $$y_{73} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}$$
    $$y_{74} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}$$
    $$y_{75} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}$$
    $$y_{76} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}$$
    $$y_{77} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}$$
    График
    Быстрый ответ [src]
         77___
    y1 = \/ 3 
    $$y_{1} = \sqrt[77]{3}$$
           77___    /pi\     77___    /pi\
    y2 = - \/ 3 *cos|--| - I*\/ 3 *sin|--|
                    \77/              \77/
    $$y_{2} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}$$
           77___    /pi\     77___    /pi\
    y3 = - \/ 3 *cos|--| + I*\/ 3 *sin|--|
                    \77/              \77/
    $$y_{3} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}$$
         77___    /2*pi\     77___    /2*pi\
    y4 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                  \ 77 /              \ 77 /
    $$y_{4} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}$$
         77___    /2*pi\     77___    /2*pi\
    y5 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                  \ 77 /              \ 77 /
    $$y_{5} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}$$
           77___    /3*pi\     77___    /3*pi\
    y6 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                    \ 77 /              \ 77 /
    $$y_{6} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}$$
           77___    /3*pi\     77___    /3*pi\
    y7 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                    \ 77 /              \ 77 /
    $$y_{7} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}$$
         77___    /4*pi\     77___    /4*pi\
    y8 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                  \ 77 /              \ 77 /
    $$y_{8} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}$$
         77___    /4*pi\     77___    /4*pi\
    y9 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                  \ 77 /              \ 77 /
    $$y_{9} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}$$
            77___    /5*pi\     77___    /5*pi\
    y10 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 77 /              \ 77 /
    $$y_{10} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}$$
            77___    /5*pi\     77___    /5*pi\
    y11 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 77 /              \ 77 /
    $$y_{11} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}$$
          77___    /6*pi\     77___    /6*pi\
    y12 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 77 /              \ 77 /
    $$y_{12} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}$$
          77___    /6*pi\     77___    /6*pi\
    y13 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 77 /              \ 77 /
    $$y_{13} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}$$
            77___    /pi\     77___    /pi\
    y14 = - \/ 3 *cos|--| - I*\/ 3 *sin|--|
                     \11/              \11/
    $$y_{14} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}$$
            77___    /pi\     77___    /pi\
    y15 = - \/ 3 *cos|--| + I*\/ 3 *sin|--|
                     \11/              \11/
    $$y_{15} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}$$
          77___    /8*pi\     77___    /8*pi\
    y16 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 77 /              \ 77 /
    $$y_{16} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}$$
          77___    /8*pi\     77___    /8*pi\
    y17 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 77 /              \ 77 /
    $$y_{17} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}$$
            77___    /9*pi\     77___    /9*pi\
    y18 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 77 /              \ 77 /
    $$y_{18} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}$$
            77___    /9*pi\     77___    /9*pi\
    y19 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 77 /              \ 77 /
    $$y_{19} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}$$
          77___    /10*pi\     77___    /10*pi\
    y20 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{20} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}$$
          77___    /10*pi\     77___    /10*pi\
    y21 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{21} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}$$
            77___    /pi\     77___    /pi\
    y22 = - \/ 3 *cos|--| - I*\/ 3 *sin|--|
                     \7 /              \7 /
    $$y_{22} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}$$
            77___    /pi\     77___    /pi\
    y23 = - \/ 3 *cos|--| + I*\/ 3 *sin|--|
                     \7 /              \7 /
    $$y_{23} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}$$
          77___    /12*pi\     77___    /12*pi\
    y24 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{24} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}$$
          77___    /12*pi\     77___    /12*pi\
    y25 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{25} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}$$
            77___    /13*pi\     77___    /13*pi\
    y26 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{26} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}$$
            77___    /13*pi\     77___    /13*pi\
    y27 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{27} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}$$
          77___    /2*pi\     77___    /2*pi\
    y28 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 11 /              \ 11 /
    $$y_{28} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}$$
          77___    /2*pi\     77___    /2*pi\
    y29 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 11 /              \ 11 /
    $$y_{29} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}$$
            77___    /15*pi\     77___    /15*pi\
    y30 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{30} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}$$
            77___    /15*pi\     77___    /15*pi\
    y31 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{31} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}$$
          77___    /16*pi\     77___    /16*pi\
    y32 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{32} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}$$
          77___    /16*pi\     77___    /16*pi\
    y33 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{33} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}$$
            77___    /17*pi\     77___    /17*pi\
    y34 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{34} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}$$
            77___    /17*pi\     77___    /17*pi\
    y35 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{35} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}$$
          77___    /18*pi\     77___    /18*pi\
    y36 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{36} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}$$
          77___    /18*pi\     77___    /18*pi\
    y37 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{37} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}$$
            77___    /19*pi\     77___    /19*pi\
    y38 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{38} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}$$
            77___    /19*pi\     77___    /19*pi\
    y39 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{39} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}$$
          77___    /20*pi\     77___    /20*pi\
    y40 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{40} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}$$
          77___    /20*pi\     77___    /20*pi\
    y41 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{41} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}$$
            77___    /3*pi\     77___    /3*pi\
    y42 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 11 /              \ 11 /
    $$y_{42} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}$$
            77___    /3*pi\     77___    /3*pi\
    y43 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 11 /              \ 11 /
    $$y_{43} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}$$
          77___    /2*pi\     77___    /2*pi\
    y44 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 7  /              \ 7  /
    $$y_{44} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}$$
          77___    /2*pi\     77___    /2*pi\
    y45 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 7  /              \ 7  /
    $$y_{45} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}$$
            77___    /23*pi\     77___    /23*pi\
    y46 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{46} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}$$
            77___    /23*pi\     77___    /23*pi\
    y47 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{47} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}$$
          77___    /24*pi\     77___    /24*pi\
    y48 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{48} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}$$
          77___    /24*pi\     77___    /24*pi\
    y49 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{49} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}$$
            77___    /25*pi\     77___    /25*pi\
    y50 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{50} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}$$
            77___    /25*pi\     77___    /25*pi\
    y51 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{51} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}$$
          77___    /26*pi\     77___    /26*pi\
    y52 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{52} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}$$
          77___    /26*pi\     77___    /26*pi\
    y53 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{53} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}$$
            77___    /27*pi\     77___    /27*pi\
    y54 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{54} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}$$
            77___    /27*pi\     77___    /27*pi\
    y55 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{55} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}$$
          77___    /4*pi\     77___    /4*pi\
    y56 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 11 /              \ 11 /
    $$y_{56} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}$$
          77___    /4*pi\     77___    /4*pi\
    y57 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 11 /              \ 11 /
    $$y_{57} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}$$
            77___    /29*pi\     77___    /29*pi\
    y58 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{58} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}$$
            77___    /29*pi\     77___    /29*pi\
    y59 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{59} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}$$
          77___    /30*pi\     77___    /30*pi\
    y60 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{60} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}$$
          77___    /30*pi\     77___    /30*pi\
    y61 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{61} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}$$
            77___    /31*pi\     77___    /31*pi\
    y62 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{62} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}$$
            77___    /31*pi\     77___    /31*pi\
    y63 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{63} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}$$
          77___    /32*pi\     77___    /32*pi\
    y64 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{64} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}$$
          77___    /32*pi\     77___    /32*pi\
    y65 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{65} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}$$
            77___    /3*pi\     77___    /3*pi\
    y66 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 7  /              \ 7  /
    $$y_{66} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}$$
            77___    /3*pi\     77___    /3*pi\
    y67 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 7  /              \ 7  /
    $$y_{67} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}$$
          77___    /34*pi\     77___    /34*pi\
    y68 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{68} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}$$
          77___    /34*pi\     77___    /34*pi\
    y69 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{69} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}$$
            77___    /5*pi\     77___    /5*pi\
    y70 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 11 /              \ 11 /
    $$y_{70} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}$$
            77___    /5*pi\     77___    /5*pi\
    y71 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 11 /              \ 11 /
    $$y_{71} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}$$
          77___    /36*pi\     77___    /36*pi\
    y72 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{72} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}$$
          77___    /36*pi\     77___    /36*pi\
    y73 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{73} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}$$
            77___    /37*pi\     77___    /37*pi\
    y74 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{74} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}$$
            77___    /37*pi\     77___    /37*pi\
    y75 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    $$y_{75} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}$$
          77___    /38*pi\     77___    /38*pi\
    y76 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{76} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}$$
          77___    /38*pi\     77___    /38*pi\
    y77 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    $$y_{77} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}$$
    Численный ответ [src]
    y1 = 0.931107011136 + 0.402475033223*i
    y2 = -0.913915755741 + 0.440118631693*i
    y3 = 1.01099472902 + 0.082680568804*i
    y4 = 0.265868074001 + 0.978907853571*i
    y5 = 0.960814280971 + 0.325241965369*i
    y6 = -0.973280850592 - 0.285781042803*i
    y7 = 0.752899998689 + 0.679770557269*i
    y8 = 0.895203377764 - 0.477029696136*i
    y9 = -0.599574945577 - 0.818203094098*i
    y10 = 0.421384510696 + 0.922703372*i
    y11 = -0.830263301045 + 0.582760044524*i
    y12 = 1.00089149353 + 0.164810912064*i
    y13 = -1.01352580204 + 0.0413747164681*i
    y14 = 0.265868074001 - 0.978907853571*i
    y15 = -0.144359897003 + 1.00404513778*i
    y16 = 0.495191279277 + 0.885286403083*i
    y17 = 0.632449326234 + 0.793066370679*i
    y18 = 0.185193342114 - 0.997321334672*i
    y19 = -0.875001022112 - 0.513146791726*i
    y20 = -0.225718551184 - 0.988937588631*i
    y21 = 0.853342313611 - 0.548409805124*i
    y22 = 0.565702631595 - 0.841977999215*i
    y23 = 0.495191279277 - 0.885286403083*i
    y24 = 1.01099472902 - 0.082680568804*i
    y25 = 0.103286179091 + 1.00909780684*i
    y26 = 0.694987174954 - 0.738877016293*i
    y27 = 0.98412749029 - 0.245844465896*i
    y28 = -0.993336146902 + 0.205498705137*i
    y29 = 0.895203377764 + 0.477029696136*i
    y30 = -0.780000314694 - 0.648495125373*i
    y31 = -0.383398068332 - 0.939123176029*i
    y32 = -0.946748530802 + 0.364161554781*i
    y33 = 0.565702631595 + 0.841977999215*i
    y34 = 0.185193342114 + 0.997321334672*i
    y35 = -0.0620405515259 - 1.01247093219*i
    y36 = 0.98412749029 + 0.245844465896*i
    y37 = 0.103286179091 - 1.00909780684*i
    y38 = -0.0620405515259 + 1.01247093219*i
    y39 = 0.344773497721 + 0.953979902212*i
    y40 = 0.853342313611 + 0.548409805124*i
    y41 = -0.305575085648 + 0.967248822996*i
    y42 = -0.664271057403 + 0.766609666553*i
    y43 = 0.020691663586 + 1.01415889959*i
    y44 = 0.752899998689 - 0.679770557269*i
    y45 = 0.931107011136 - 0.402475033223*i
    y46 = 0.805802397152 + 0.616140337341*i
    y47 = 0.694987174954 + 0.738877016293*i
    y48 = 0.421384510696 - 0.922703372*i
    y49 = -0.530888761411 + 0.864351515046*i
    y50 = 0.344773497721 - 0.953979902212*i
    y51 = -0.664271057403 - 0.766609666553*i
    y52 = 1.00089149353 - 0.164810912064*i
    y53 = -0.780000314694 + 0.648495125373*i
    y54 = -0.973280850592 + 0.285781042803*i
    y55 = -0.830263301045 - 0.582760044524*i
    y56 = -0.724546554939 - 0.709914578158*i
    y57 = -0.913915755741 - 0.440118631693*i
    y58 = -0.383398068332 + 0.939123176029*i
    y59 = 0.805802397152 - 0.616140337341*i
    y60 = -1.00678095504 - 0.123848807493*i
    y61 = -0.993336146902 - 0.205498705137*i
    y62 = -0.305575085648 - 0.967248822996*i
    y63 = -1.01352580204 - 0.0413747164681*i
    y64 = 0.632449326234 - 0.793066370679*i
    y65 = 0.020691663586 - 1.01415889959*i
    y66 = 0.960814280971 - 0.325241965369*i
    y67 = -1.00678095504 + 0.123848807493*i
    y68 = -0.458669600129 - 0.90474781927*i
    y69 = -0.144359897003 - 1.00404513778*i
    y70 = -0.458669600129 + 0.90474781927*i
    y71 = -0.599574945577 + 0.818203094098*i
    y72 = -0.946748530802 - 0.364161554781*i
    y73 = -0.875001022112 + 0.513146791726*i
    y74 = -0.225718551184 + 0.988937588631*i
    y75 = -0.724546554939 + 0.709914578158*i
    y76 = -0.530888761411 - 0.864351515046*i
    y77 = 1.01436996138000
    График
    y^77=3 (уравнение) /media/krcore-image-pods/5896/4e76/7599/753d/im.png