y^77=3 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: y^77=3

    Решение

    Вы ввели [src]
     77    
    y   = 3
    y77=3y^{77} = 3
    Подробное решение
    Дано уравнение
    y77=3y^{77} = 3
    Т.к. степень в ур-нии равна = 77 - не содержит чётного числа в числителе, то
    ур-ние будет иметь один действительный корень.
    Извлечём корень 77-й степени из обеих частей ур-ния:
    Получим:
    y7777=377\sqrt[77]{y^{77}} = \sqrt[77]{3}
    или
    y=377y = \sqrt[77]{3}
    Раскрываем скобочки в правой части ур-ния
    y = 3^1/77

    Получим ответ: y = 3^(1/77)

    Остальные 76 корня(ей) являются комплексными.
    сделаем замену:
    z=yz = y
    тогда ур-ние будет таким:
    z77=3z^{77} = 3
    Любое комплексное число можно представить так:
    z=reipz = r e^{i p}
    подставляем в уравнение
    r77e77ip=3r^{77} e^{77 i p} = 3
    где
    r=377r = \sqrt[77]{3}
    - модуль комплексного числа
    Подставляем r:
    e77ip=1e^{77 i p} = 1
    Используя формулу Эйлера, найдём корни для p
    isin(77p)+cos(77p)=1i \sin{\left (77 p \right )} + \cos{\left (77 p \right )} = 1
    значит
    cos(77p)=1\cos{\left (77 p \right )} = 1
    и
    sin(77p)=0\sin{\left (77 p \right )} = 0
    тогда
    p=2π77Np = \frac{2 \pi}{77} N
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    z1=377z_{1} = \sqrt[77]{3}
    z2=377cos(π77)377isin(π77)z_{2} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}
    z3=377cos(π77)+377isin(π77)z_{3} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}
    z4=377cos(2π77)377isin(2π77)z_{4} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}
    z5=377cos(2π77)+377isin(2π77)z_{5} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}
    z6=377cos(3π77)377isin(3π77)z_{6} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}
    z7=377cos(3π77)+377isin(3π77)z_{7} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}
    z8=377cos(4π77)377isin(4π77)z_{8} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}
    z9=377cos(4π77)+377isin(4π77)z_{9} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}
    z10=377cos(5π77)377isin(5π77)z_{10} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}
    z11=377cos(5π77)+377isin(5π77)z_{11} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}
    z12=377cos(6π77)377isin(6π77)z_{12} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}
    z13=377cos(6π77)+377isin(6π77)z_{13} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}
    z14=377cos(π11)377isin(π11)z_{14} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}
    z15=377cos(π11)+377isin(π11)z_{15} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}
    z16=377cos(8π77)377isin(8π77)z_{16} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}
    z17=377cos(8π77)+377isin(8π77)z_{17} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}
    z18=377cos(9π77)377isin(9π77)z_{18} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}
    z19=377cos(9π77)+377isin(9π77)z_{19} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}
    z20=377cos(10π77)377isin(10π77)z_{20} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}
    z21=377cos(10π77)+377isin(10π77)z_{21} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}
    z22=377cos(π7)377isin(π7)z_{22} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}
    z23=377cos(π7)+377isin(π7)z_{23} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}
    z24=377cos(12π77)377isin(12π77)z_{24} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}
    z25=377cos(12π77)+377isin(12π77)z_{25} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}
    z26=377cos(13π77)377isin(13π77)z_{26} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}
    z27=377cos(13π77)+377isin(13π77)z_{27} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}
    z28=377cos(2π11)377isin(2π11)z_{28} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}
    z29=377cos(2π11)+377isin(2π11)z_{29} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}
    z30=377cos(15π77)377isin(15π77)z_{30} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}
    z31=377cos(15π77)+377isin(15π77)z_{31} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}
    z32=377cos(16π77)377isin(16π77)z_{32} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}
    z33=377cos(16π77)+377isin(16π77)z_{33} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}
    z34=377cos(17π77)377isin(17π77)z_{34} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}
    z35=377cos(17π77)+377isin(17π77)z_{35} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}
    z36=377cos(18π77)377isin(18π77)z_{36} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}
    z37=377cos(18π77)+377isin(18π77)z_{37} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}
    z38=377cos(19π77)377isin(19π77)z_{38} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}
    z39=377cos(19π77)+377isin(19π77)z_{39} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}
    z40=377cos(20π77)377isin(20π77)z_{40} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}
    z41=377cos(20π77)+377isin(20π77)z_{41} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}
    z42=377cos(3π11)377isin(3π11)z_{42} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}
    z43=377cos(3π11)+377isin(3π11)z_{43} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}
    z44=377cos(2π7)377isin(2π7)z_{44} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}
    z45=377cos(2π7)+377isin(2π7)z_{45} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}
    z46=377cos(23π77)377isin(23π77)z_{46} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}
    z47=377cos(23π77)+377isin(23π77)z_{47} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}
    z48=377cos(24π77)377isin(24π77)z_{48} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}
    z49=377cos(24π77)+377isin(24π77)z_{49} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}
    z50=377cos(25π77)377isin(25π77)z_{50} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}
    z51=377cos(25π77)+377isin(25π77)z_{51} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}
    z52=377cos(26π77)377isin(26π77)z_{52} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}
    z53=377cos(26π77)+377isin(26π77)z_{53} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}
    z54=377cos(27π77)377isin(27π77)z_{54} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}
    z55=377cos(27π77)+377isin(27π77)z_{55} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}
    z56=377cos(4π11)377isin(4π11)z_{56} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}
    z57=377cos(4π11)+377isin(4π11)z_{57} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}
    z58=377cos(29π77)377isin(29π77)z_{58} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}
    z59=377cos(29π77)+377isin(29π77)z_{59} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}
    z60=377cos(30π77)377isin(30π77)z_{60} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}
    z61=377cos(30π77)+377isin(30π77)z_{61} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}
    z62=377cos(31π77)377isin(31π77)z_{62} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}
    z63=377cos(31π77)+377isin(31π77)z_{63} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}
    z64=377cos(32π77)377isin(32π77)z_{64} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}
    z65=377cos(32π77)+377isin(32π77)z_{65} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}
    z66=377cos(3π7)377isin(3π7)z_{66} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}
    z67=377cos(3π7)+377isin(3π7)z_{67} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}
    z68=377cos(34π77)377isin(34π77)z_{68} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}
    z69=377cos(34π77)+377isin(34π77)z_{69} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}
    z70=377cos(5π11)377isin(5π11)z_{70} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}
    z71=377cos(5π11)+377isin(5π11)z_{71} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}
    z72=377cos(36π77)377isin(36π77)z_{72} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}
    z73=377cos(36π77)+377isin(36π77)z_{73} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}
    z74=377cos(37π77)377isin(37π77)z_{74} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}
    z75=377cos(37π77)+377isin(37π77)z_{75} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}
    z76=377cos(38π77)377isin(38π77)z_{76} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}
    z77=377cos(38π77)+377isin(38π77)z_{77} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}
    делаем обратную замену
    z=yz = y
    y=zy = z

    Тогда, окончательный ответ:
    y1=377y_{1} = \sqrt[77]{3}
    y2=377cos(π77)377isin(π77)y_{2} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}
    y3=377cos(π77)+377isin(π77)y_{3} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}
    y4=377cos(2π77)377isin(2π77)y_{4} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}
    y5=377cos(2π77)+377isin(2π77)y_{5} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}
    y6=377cos(3π77)377isin(3π77)y_{6} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}
    y7=377cos(3π77)+377isin(3π77)y_{7} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}
    y8=377cos(4π77)377isin(4π77)y_{8} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}
    y9=377cos(4π77)+377isin(4π77)y_{9} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}
    y10=377cos(5π77)377isin(5π77)y_{10} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}
    y11=377cos(5π77)+377isin(5π77)y_{11} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}
    y12=377cos(6π77)377isin(6π77)y_{12} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}
    y13=377cos(6π77)+377isin(6π77)y_{13} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}
    y14=377cos(π11)377isin(π11)y_{14} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}
    y15=377cos(π11)+377isin(π11)y_{15} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}
    y16=377cos(8π77)377isin(8π77)y_{16} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}
    y17=377cos(8π77)+377isin(8π77)y_{17} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}
    y18=377cos(9π77)377isin(9π77)y_{18} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}
    y19=377cos(9π77)+377isin(9π77)y_{19} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}
    y20=377cos(10π77)377isin(10π77)y_{20} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}
    y21=377cos(10π77)+377isin(10π77)y_{21} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}
    y22=377cos(π7)377isin(π7)y_{22} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}
    y23=377cos(π7)+377isin(π7)y_{23} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}
    y24=377cos(12π77)377isin(12π77)y_{24} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}
    y25=377cos(12π77)+377isin(12π77)y_{25} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}
    y26=377cos(13π77)377isin(13π77)y_{26} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}
    y27=377cos(13π77)+377isin(13π77)y_{27} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}
    y28=377cos(2π11)377isin(2π11)y_{28} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}
    y29=377cos(2π11)+377isin(2π11)y_{29} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}
    y30=377cos(15π77)377isin(15π77)y_{30} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}
    y31=377cos(15π77)+377isin(15π77)y_{31} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}
    y32=377cos(16π77)377isin(16π77)y_{32} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}
    y33=377cos(16π77)+377isin(16π77)y_{33} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}
    y34=377cos(17π77)377isin(17π77)y_{34} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}
    y35=377cos(17π77)+377isin(17π77)y_{35} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}
    y36=377cos(18π77)377isin(18π77)y_{36} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}
    y37=377cos(18π77)+377isin(18π77)y_{37} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}
    y38=377cos(19π77)377isin(19π77)y_{38} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}
    y39=377cos(19π77)+377isin(19π77)y_{39} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}
    y40=377cos(20π77)377isin(20π77)y_{40} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}
    y41=377cos(20π77)+377isin(20π77)y_{41} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}
    y42=377cos(3π11)377isin(3π11)y_{42} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}
    y43=377cos(3π11)+377isin(3π11)y_{43} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}
    y44=377cos(2π7)377isin(2π7)y_{44} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}
    y45=377cos(2π7)+377isin(2π7)y_{45} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}
    y46=377cos(23π77)377isin(23π77)y_{46} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}
    y47=377cos(23π77)+377isin(23π77)y_{47} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}
    y48=377cos(24π77)377isin(24π77)y_{48} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}
    y49=377cos(24π77)+377isin(24π77)y_{49} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}
    y50=377cos(25π77)377isin(25π77)y_{50} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}
    y51=377cos(25π77)+377isin(25π77)y_{51} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}
    y52=377cos(26π77)377isin(26π77)y_{52} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}
    y53=377cos(26π77)+377isin(26π77)y_{53} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}
    y54=377cos(27π77)377isin(27π77)y_{54} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}
    y55=377cos(27π77)+377isin(27π77)y_{55} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}
    y56=377cos(4π11)377isin(4π11)y_{56} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}
    y57=377cos(4π11)+377isin(4π11)y_{57} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}
    y58=377cos(29π77)377isin(29π77)y_{58} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}
    y59=377cos(29π77)+377isin(29π77)y_{59} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}
    y60=377cos(30π77)377isin(30π77)y_{60} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}
    y61=377cos(30π77)+377isin(30π77)y_{61} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}
    y62=377cos(31π77)377isin(31π77)y_{62} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}
    y63=377cos(31π77)+377isin(31π77)y_{63} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}
    y64=377cos(32π77)377isin(32π77)y_{64} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}
    y65=377cos(32π77)+377isin(32π77)y_{65} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}
    y66=377cos(3π7)377isin(3π7)y_{66} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}
    y67=377cos(3π7)+377isin(3π7)y_{67} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}
    y68=377cos(34π77)377isin(34π77)y_{68} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}
    y69=377cos(34π77)+377isin(34π77)y_{69} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}
    y70=377cos(5π11)377isin(5π11)y_{70} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}
    y71=377cos(5π11)+377isin(5π11)y_{71} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}
    y72=377cos(36π77)377isin(36π77)y_{72} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}
    y73=377cos(36π77)+377isin(36π77)y_{73} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}
    y74=377cos(37π77)377isin(37π77)y_{74} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}
    y75=377cos(37π77)+377isin(37π77)y_{75} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}
    y76=377cos(38π77)377isin(38π77)y_{76} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}
    y77=377cos(38π77)+377isin(38π77)y_{77} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}
    График
    01-13-12-11-10-9-8-7-6-5-4-3-2-1-2e731e73
    Быстрый ответ [src]
         77___
    y1 = \/ 3 
    y1=377y_{1} = \sqrt[77]{3}
           77___    /pi\     77___    /pi\
    y2 = - \/ 3 *cos|--| - I*\/ 3 *sin|--|
                    \77/              \77/
    y2=377cos(π77)377isin(π77)y_{2} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}
           77___    /pi\     77___    /pi\
    y3 = - \/ 3 *cos|--| + I*\/ 3 *sin|--|
                    \77/              \77/
    y3=377cos(π77)+377isin(π77)y_{3} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{77} \right )}
         77___    /2*pi\     77___    /2*pi\
    y4 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                  \ 77 /              \ 77 /
    y4=377cos(2π77)377isin(2π77)y_{4} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}
         77___    /2*pi\     77___    /2*pi\
    y5 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                  \ 77 /              \ 77 /
    y5=377cos(2π77)+377isin(2π77)y_{5} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{77} \right )}
           77___    /3*pi\     77___    /3*pi\
    y6 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                    \ 77 /              \ 77 /
    y6=377cos(3π77)377isin(3π77)y_{6} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}
           77___    /3*pi\     77___    /3*pi\
    y7 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                    \ 77 /              \ 77 /
    y7=377cos(3π77)+377isin(3π77)y_{7} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{77} \right )}
         77___    /4*pi\     77___    /4*pi\
    y8 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                  \ 77 /              \ 77 /
    y8=377cos(4π77)377isin(4π77)y_{8} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}
         77___    /4*pi\     77___    /4*pi\
    y9 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                  \ 77 /              \ 77 /
    y9=377cos(4π77)+377isin(4π77)y_{9} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{77} \right )}
            77___    /5*pi\     77___    /5*pi\
    y10 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 77 /              \ 77 /
    y10=377cos(5π77)377isin(5π77)y_{10} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}
            77___    /5*pi\     77___    /5*pi\
    y11 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 77 /              \ 77 /
    y11=377cos(5π77)+377isin(5π77)y_{11} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{77} \right )}
          77___    /6*pi\     77___    /6*pi\
    y12 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 77 /              \ 77 /
    y12=377cos(6π77)377isin(6π77)y_{12} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}
          77___    /6*pi\     77___    /6*pi\
    y13 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 77 /              \ 77 /
    y13=377cos(6π77)+377isin(6π77)y_{13} = \sqrt[77]{3} \cos{\left (\frac{6 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{6 \pi}{77} \right )}
            77___    /pi\     77___    /pi\
    y14 = - \/ 3 *cos|--| - I*\/ 3 *sin|--|
                     \11/              \11/
    y14=377cos(π11)377isin(π11)y_{14} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}
            77___    /pi\     77___    /pi\
    y15 = - \/ 3 *cos|--| + I*\/ 3 *sin|--|
                     \11/              \11/
    y15=377cos(π11)+377isin(π11)y_{15} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{11} \right )}
          77___    /8*pi\     77___    /8*pi\
    y16 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 77 /              \ 77 /
    y16=377cos(8π77)377isin(8π77)y_{16} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}
          77___    /8*pi\     77___    /8*pi\
    y17 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 77 /              \ 77 /
    y17=377cos(8π77)+377isin(8π77)y_{17} = \sqrt[77]{3} \cos{\left (\frac{8 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{8 \pi}{77} \right )}
            77___    /9*pi\     77___    /9*pi\
    y18 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 77 /              \ 77 /
    y18=377cos(9π77)377isin(9π77)y_{18} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}
            77___    /9*pi\     77___    /9*pi\
    y19 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 77 /              \ 77 /
    y19=377cos(9π77)+377isin(9π77)y_{19} = - \sqrt[77]{3} \cos{\left (\frac{9 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{9 \pi}{77} \right )}
          77___    /10*pi\     77___    /10*pi\
    y20 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y20=377cos(10π77)377isin(10π77)y_{20} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}
          77___    /10*pi\     77___    /10*pi\
    y21 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y21=377cos(10π77)+377isin(10π77)y_{21} = \sqrt[77]{3} \cos{\left (\frac{10 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{10 \pi}{77} \right )}
            77___    /pi\     77___    /pi\
    y22 = - \/ 3 *cos|--| - I*\/ 3 *sin|--|
                     \7 /              \7 /
    y22=377cos(π7)377isin(π7)y_{22} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}
            77___    /pi\     77___    /pi\
    y23 = - \/ 3 *cos|--| + I*\/ 3 *sin|--|
                     \7 /              \7 /
    y23=377cos(π7)+377isin(π7)y_{23} = - \sqrt[77]{3} \cos{\left (\frac{\pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{\pi}{7} \right )}
          77___    /12*pi\     77___    /12*pi\
    y24 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y24=377cos(12π77)377isin(12π77)y_{24} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}
          77___    /12*pi\     77___    /12*pi\
    y25 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y25=377cos(12π77)+377isin(12π77)y_{25} = \sqrt[77]{3} \cos{\left (\frac{12 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{12 \pi}{77} \right )}
            77___    /13*pi\     77___    /13*pi\
    y26 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y26=377cos(13π77)377isin(13π77)y_{26} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}
            77___    /13*pi\     77___    /13*pi\
    y27 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y27=377cos(13π77)+377isin(13π77)y_{27} = - \sqrt[77]{3} \cos{\left (\frac{13 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{13 \pi}{77} \right )}
          77___    /2*pi\     77___    /2*pi\
    y28 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 11 /              \ 11 /
    y28=377cos(2π11)377isin(2π11)y_{28} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}
          77___    /2*pi\     77___    /2*pi\
    y29 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 11 /              \ 11 /
    y29=377cos(2π11)+377isin(2π11)y_{29} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{11} \right )}
            77___    /15*pi\     77___    /15*pi\
    y30 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y30=377cos(15π77)377isin(15π77)y_{30} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}
            77___    /15*pi\     77___    /15*pi\
    y31 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y31=377cos(15π77)+377isin(15π77)y_{31} = - \sqrt[77]{3} \cos{\left (\frac{15 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{15 \pi}{77} \right )}
          77___    /16*pi\     77___    /16*pi\
    y32 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y32=377cos(16π77)377isin(16π77)y_{32} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}
          77___    /16*pi\     77___    /16*pi\
    y33 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y33=377cos(16π77)+377isin(16π77)y_{33} = \sqrt[77]{3} \cos{\left (\frac{16 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{16 \pi}{77} \right )}
            77___    /17*pi\     77___    /17*pi\
    y34 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y34=377cos(17π77)377isin(17π77)y_{34} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}
            77___    /17*pi\     77___    /17*pi\
    y35 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y35=377cos(17π77)+377isin(17π77)y_{35} = - \sqrt[77]{3} \cos{\left (\frac{17 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{17 \pi}{77} \right )}
          77___    /18*pi\     77___    /18*pi\
    y36 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y36=377cos(18π77)377isin(18π77)y_{36} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}
          77___    /18*pi\     77___    /18*pi\
    y37 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y37=377cos(18π77)+377isin(18π77)y_{37} = \sqrt[77]{3} \cos{\left (\frac{18 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{18 \pi}{77} \right )}
            77___    /19*pi\     77___    /19*pi\
    y38 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y38=377cos(19π77)377isin(19π77)y_{38} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}
            77___    /19*pi\     77___    /19*pi\
    y39 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y39=377cos(19π77)+377isin(19π77)y_{39} = - \sqrt[77]{3} \cos{\left (\frac{19 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{19 \pi}{77} \right )}
          77___    /20*pi\     77___    /20*pi\
    y40 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y40=377cos(20π77)377isin(20π77)y_{40} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}
          77___    /20*pi\     77___    /20*pi\
    y41 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y41=377cos(20π77)+377isin(20π77)y_{41} = \sqrt[77]{3} \cos{\left (\frac{20 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{20 \pi}{77} \right )}
            77___    /3*pi\     77___    /3*pi\
    y42 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 11 /              \ 11 /
    y42=377cos(3π11)377isin(3π11)y_{42} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}
            77___    /3*pi\     77___    /3*pi\
    y43 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 11 /              \ 11 /
    y43=377cos(3π11)+377isin(3π11)y_{43} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{11} \right )}
          77___    /2*pi\     77___    /2*pi\
    y44 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 7  /              \ 7  /
    y44=377cos(2π7)377isin(2π7)y_{44} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}
          77___    /2*pi\     77___    /2*pi\
    y45 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 7  /              \ 7  /
    y45=377cos(2π7)+377isin(2π7)y_{45} = \sqrt[77]{3} \cos{\left (\frac{2 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{2 \pi}{7} \right )}
            77___    /23*pi\     77___    /23*pi\
    y46 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y46=377cos(23π77)377isin(23π77)y_{46} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}
            77___    /23*pi\     77___    /23*pi\
    y47 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y47=377cos(23π77)+377isin(23π77)y_{47} = - \sqrt[77]{3} \cos{\left (\frac{23 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{23 \pi}{77} \right )}
          77___    /24*pi\     77___    /24*pi\
    y48 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y48=377cos(24π77)377isin(24π77)y_{48} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}
          77___    /24*pi\     77___    /24*pi\
    y49 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y49=377cos(24π77)+377isin(24π77)y_{49} = \sqrt[77]{3} \cos{\left (\frac{24 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{24 \pi}{77} \right )}
            77___    /25*pi\     77___    /25*pi\
    y50 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y50=377cos(25π77)377isin(25π77)y_{50} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}
            77___    /25*pi\     77___    /25*pi\
    y51 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y51=377cos(25π77)+377isin(25π77)y_{51} = - \sqrt[77]{3} \cos{\left (\frac{25 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{25 \pi}{77} \right )}
          77___    /26*pi\     77___    /26*pi\
    y52 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y52=377cos(26π77)377isin(26π77)y_{52} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}
          77___    /26*pi\     77___    /26*pi\
    y53 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y53=377cos(26π77)+377isin(26π77)y_{53} = \sqrt[77]{3} \cos{\left (\frac{26 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{26 \pi}{77} \right )}
            77___    /27*pi\     77___    /27*pi\
    y54 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y54=377cos(27π77)377isin(27π77)y_{54} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}
            77___    /27*pi\     77___    /27*pi\
    y55 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y55=377cos(27π77)+377isin(27π77)y_{55} = - \sqrt[77]{3} \cos{\left (\frac{27 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{27 \pi}{77} \right )}
          77___    /4*pi\     77___    /4*pi\
    y56 = \/ 3 *cos|----| - I*\/ 3 *sin|----|
                   \ 11 /              \ 11 /
    y56=377cos(4π11)377isin(4π11)y_{56} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}
          77___    /4*pi\     77___    /4*pi\
    y57 = \/ 3 *cos|----| + I*\/ 3 *sin|----|
                   \ 11 /              \ 11 /
    y57=377cos(4π11)+377isin(4π11)y_{57} = \sqrt[77]{3} \cos{\left (\frac{4 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{4 \pi}{11} \right )}
            77___    /29*pi\     77___    /29*pi\
    y58 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y58=377cos(29π77)377isin(29π77)y_{58} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}
            77___    /29*pi\     77___    /29*pi\
    y59 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y59=377cos(29π77)+377isin(29π77)y_{59} = - \sqrt[77]{3} \cos{\left (\frac{29 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{29 \pi}{77} \right )}
          77___    /30*pi\     77___    /30*pi\
    y60 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y60=377cos(30π77)377isin(30π77)y_{60} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}
          77___    /30*pi\     77___    /30*pi\
    y61 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y61=377cos(30π77)+377isin(30π77)y_{61} = \sqrt[77]{3} \cos{\left (\frac{30 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{30 \pi}{77} \right )}
            77___    /31*pi\     77___    /31*pi\
    y62 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y62=377cos(31π77)377isin(31π77)y_{62} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}
            77___    /31*pi\     77___    /31*pi\
    y63 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y63=377cos(31π77)+377isin(31π77)y_{63} = - \sqrt[77]{3} \cos{\left (\frac{31 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{31 \pi}{77} \right )}
          77___    /32*pi\     77___    /32*pi\
    y64 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y64=377cos(32π77)377isin(32π77)y_{64} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}
          77___    /32*pi\     77___    /32*pi\
    y65 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y65=377cos(32π77)+377isin(32π77)y_{65} = \sqrt[77]{3} \cos{\left (\frac{32 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{32 \pi}{77} \right )}
            77___    /3*pi\     77___    /3*pi\
    y66 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 7  /              \ 7  /
    y66=377cos(3π7)377isin(3π7)y_{66} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} - \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}
            77___    /3*pi\     77___    /3*pi\
    y67 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 7  /              \ 7  /
    y67=377cos(3π7)+377isin(3π7)y_{67} = - \sqrt[77]{3} \cos{\left (\frac{3 \pi}{7} \right )} + \sqrt[77]{3} i \sin{\left (\frac{3 \pi}{7} \right )}
          77___    /34*pi\     77___    /34*pi\
    y68 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y68=377cos(34π77)377isin(34π77)y_{68} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}
          77___    /34*pi\     77___    /34*pi\
    y69 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y69=377cos(34π77)+377isin(34π77)y_{69} = \sqrt[77]{3} \cos{\left (\frac{34 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{34 \pi}{77} \right )}
            77___    /5*pi\     77___    /5*pi\
    y70 = - \/ 3 *cos|----| - I*\/ 3 *sin|----|
                     \ 11 /              \ 11 /
    y70=377cos(5π11)377isin(5π11)y_{70} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} - \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}
            77___    /5*pi\     77___    /5*pi\
    y71 = - \/ 3 *cos|----| + I*\/ 3 *sin|----|
                     \ 11 /              \ 11 /
    y71=377cos(5π11)+377isin(5π11)y_{71} = - \sqrt[77]{3} \cos{\left (\frac{5 \pi}{11} \right )} + \sqrt[77]{3} i \sin{\left (\frac{5 \pi}{11} \right )}
          77___    /36*pi\     77___    /36*pi\
    y72 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y72=377cos(36π77)377isin(36π77)y_{72} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}
          77___    /36*pi\     77___    /36*pi\
    y73 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y73=377cos(36π77)+377isin(36π77)y_{73} = \sqrt[77]{3} \cos{\left (\frac{36 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{36 \pi}{77} \right )}
            77___    /37*pi\     77___    /37*pi\
    y74 = - \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y74=377cos(37π77)377isin(37π77)y_{74} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}
            77___    /37*pi\     77___    /37*pi\
    y75 = - \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                     \  77 /              \  77 /
    y75=377cos(37π77)+377isin(37π77)y_{75} = - \sqrt[77]{3} \cos{\left (\frac{37 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{37 \pi}{77} \right )}
          77___    /38*pi\     77___    /38*pi\
    y76 = \/ 3 *cos|-----| - I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y76=377cos(38π77)377isin(38π77)y_{76} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} - \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}
          77___    /38*pi\     77___    /38*pi\
    y77 = \/ 3 *cos|-----| + I*\/ 3 *sin|-----|
                   \  77 /              \  77 /
    y77=377cos(38π77)+377isin(38π77)y_{77} = \sqrt[77]{3} \cos{\left (\frac{38 \pi}{77} \right )} + \sqrt[77]{3} i \sin{\left (\frac{38 \pi}{77} \right )}
    Численный ответ [src]
    y1 = 0.931107011136 + 0.402475033223*i
    y2 = -0.913915755741 + 0.440118631693*i
    y3 = 1.01099472902 + 0.082680568804*i
    y4 = 0.265868074001 + 0.978907853571*i
    y5 = 0.960814280971 + 0.325241965369*i
    y6 = -0.973280850592 - 0.285781042803*i
    y7 = 0.752899998689 + 0.679770557269*i
    y8 = 0.895203377764 - 0.477029696136*i
    y9 = -0.599574945577 - 0.818203094098*i
    y10 = 0.421384510696 + 0.922703372*i
    y11 = -0.830263301045 + 0.582760044524*i
    y12 = 1.00089149353 + 0.164810912064*i
    y13 = -1.01352580204 + 0.0413747164681*i
    y14 = 0.265868074001 - 0.978907853571*i
    y15 = -0.144359897003 + 1.00404513778*i
    y16 = 0.495191279277 + 0.885286403083*i
    y17 = 0.632449326234 + 0.793066370679*i
    y18 = 0.185193342114 - 0.997321334672*i
    y19 = -0.875001022112 - 0.513146791726*i
    y20 = -0.225718551184 - 0.988937588631*i
    y21 = 0.853342313611 - 0.548409805124*i
    y22 = 0.565702631595 - 0.841977999215*i
    y23 = 0.495191279277 - 0.885286403083*i
    y24 = 1.01099472902 - 0.082680568804*i
    y25 = 0.103286179091 + 1.00909780684*i
    y26 = 0.694987174954 - 0.738877016293*i
    y27 = 0.98412749029 - 0.245844465896*i
    y28 = -0.993336146902 + 0.205498705137*i
    y29 = 0.895203377764 + 0.477029696136*i
    y30 = -0.780000314694 - 0.648495125373*i
    y31 = -0.383398068332 - 0.939123176029*i
    y32 = -0.946748530802 + 0.364161554781*i
    y33 = 0.565702631595 + 0.841977999215*i
    y34 = 0.185193342114 + 0.997321334672*i
    y35 = -0.0620405515259 - 1.01247093219*i
    y36 = 0.98412749029 + 0.245844465896*i
    y37 = 0.103286179091 - 1.00909780684*i
    y38 = -0.0620405515259 + 1.01247093219*i
    y39 = 0.344773497721 + 0.953979902212*i
    y40 = 0.853342313611 + 0.548409805124*i
    y41 = -0.305575085648 + 0.967248822996*i
    y42 = -0.664271057403 + 0.766609666553*i
    y43 = 0.020691663586 + 1.01415889959*i
    y44 = 0.752899998689 - 0.679770557269*i
    y45 = 0.931107011136 - 0.402475033223*i
    y46 = 0.805802397152 + 0.616140337341*i
    y47 = 0.694987174954 + 0.738877016293*i
    y48 = 0.421384510696 - 0.922703372*i
    y49 = -0.530888761411 + 0.864351515046*i
    y50 = 0.344773497721 - 0.953979902212*i
    y51 = -0.664271057403 - 0.766609666553*i
    y52 = 1.00089149353 - 0.164810912064*i
    y53 = -0.780000314694 + 0.648495125373*i
    y54 = -0.973280850592 + 0.285781042803*i
    y55 = -0.830263301045 - 0.582760044524*i
    y56 = -0.724546554939 - 0.709914578158*i
    y57 = -0.913915755741 - 0.440118631693*i
    y58 = -0.383398068332 + 0.939123176029*i
    y59 = 0.805802397152 - 0.616140337341*i
    y60 = -1.00678095504 - 0.123848807493*i
    y61 = -0.993336146902 - 0.205498705137*i
    y62 = -0.305575085648 - 0.967248822996*i
    y63 = -1.01352580204 - 0.0413747164681*i
    y64 = 0.632449326234 - 0.793066370679*i
    y65 = 0.020691663586 - 1.01415889959*i
    y66 = 0.960814280971 - 0.325241965369*i
    y67 = -1.00678095504 + 0.123848807493*i
    y68 = -0.458669600129 - 0.90474781927*i
    y69 = -0.144359897003 - 1.00404513778*i
    y70 = -0.458669600129 + 0.90474781927*i
    y71 = -0.599574945577 + 0.818203094098*i
    y72 = -0.946748530802 - 0.364161554781*i
    y73 = -0.875001022112 + 0.513146791726*i
    y74 = -0.225718551184 + 0.988937588631*i
    y75 = -0.724546554939 + 0.709914578158*i
    y76 = -0.530888761411 - 0.864351515046*i
    y77 = 1.01436996138000
    График
    y^77=3 (уравнение) /media/krcore-image-pods/5896/4e76/7599/753d/im.png