x²+14x+40=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x²+14x+40=0

    Решение

    Вы ввели [src]
     2                
    x  + 14*x + 40 = 0
    (x2+14x)+40=0\left(x^{2} + 14 x\right) + 40 = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=14b = 14
    c=40c = 40
    , то
    D = b^2 - 4 * a * c = 

    (14)^2 - 4 * (1) * (40) = 36

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=4x_{1} = -4
    x2=10x_{2} = -10
    График
    05-30-25-20-15-10-5-200200
    Быстрый ответ [src]
    x1 = -10
    x1=10x_{1} = -10
    x2 = -4
    x2=4x_{2} = -4
    Численный ответ [src]
    x1 = -4.0
    x2 = -10.0
    График
    x²+14x+40=0 (уравнение) /media/krcore-image-pods/hash/equation/e/21/351b167cd018ccbf8072a496dc49a.png