Решите уравнение x²+x-42=0 (х ² плюс х минус 42 равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

x²+x-42=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x²+x-42=0

    Решение

    Вы ввели [src]
     2             
    x  + x - 42 = 0
    $$\left(x^{2} + x\right) - 42 = 0$$
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 1$$
    $$c = -42$$
    , то
    D = b^2 - 4 * a * c = 

    (1)^2 - 4 * (1) * (-42) = 169

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 6$$
    $$x_{2} = -7$$
    График
    Быстрый ответ [src]
    x1 = -7
    $$x_{1} = -7$$
    x2 = 6
    $$x_{2} = 6$$
    Численный ответ [src]
    x1 = 6.0
    x2 = -7.0
    График
    x²+x-42=0 (уравнение) /media/krcore-image-pods/hash/equation/8/a0/f6f00af894545770c994c9254dd63.png