x/4=9/x (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: x/4=9/x
Решение
Подробное решение
Дано уравнение
$$\frac{x}{4} = \frac{9}{x}$$
преобразуем
$$x^{2} = 36$$
Т.к. степень в ур-нии равна = 2 - содержит чётное число 2 в числителе, то
ур-ние будет иметь два действительных корня.
Извлечём корень 2-й степени из обеих частей ур-ния:
Получим:
$$\sqrt{x^{2}} = \sqrt{36}$$
$$\sqrt{x^{2}} = \left(-1\right) \sqrt{36}$$
или
$$x = 6$$
$$x = -6$$
Получим ответ: x = 6
Получим ответ: x = -6
или
$$x_{1} = -6$$
$$x_{2} = 6$$
Тогда, окончательный ответ:
$$x_{1} = -6$$
$$x_{2} = 6$$
Сумма и произведение корней
[src]