Решите уравнение x - 2/x = 9 (х минус 2 делить на х равно 9) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

x - 2/x = 9 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x - 2/x = 9

    Решение

    Вы ввели [src]
        2    
    x - - = 9
        x    
    $$x - \frac{2}{x} = 9$$
    Подробное решение
    Дано уравнение:
    $$x - \frac{2}{x} = 9$$
    Домножим обе части ур-ния на знаменатели:
    и x
    получим:
    $$x \left(x - \frac{2}{x}\right) = 9 x$$
    $$x^{2} - 2 = 9 x$$
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    $$x^{2} - 2 = 9 x$$
    в
    $$x^{2} - 9 x - 2 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = -9$$
    $$c = -2$$
    , то
    D = b^2 - 4 * a * c = 

    (-9)^2 - 4 * (1) * (-2) = 89

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = \frac{9}{2} + \frac{\sqrt{89}}{2}$$
    $$x_{2} = \frac{9}{2} - \frac{\sqrt{89}}{2}$$
    График
    Быстрый ответ [src]
               ____
         9   \/ 89 
    x1 = - - ------
         2     2   
    $$x_{1} = \frac{9}{2} - \frac{\sqrt{89}}{2}$$
               ____
         9   \/ 89 
    x2 = - + ------
         2     2   
    $$x_{2} = \frac{9}{2} + \frac{\sqrt{89}}{2}$$
    Численный ответ [src]
    x1 = -0.216990566028302
    x2 = 9.2169905660283
    График
    x - 2/x = 9 (уравнение) /media/krcore-image-pods/hash/equation/9/16/7ee53738d5006eef007e33ff052ea.png