Решите уравнение x-(6/x)=-1 (х минус (6 делить на х) равно минус 1) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

x-(6/x)=-1 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x-(6/x)=-1

    Решение

    Вы ввели [src]
        6     
    x - - = -1
        x     
    $$x - \frac{6}{x} = -1$$
    Подробное решение
    Дано уравнение:
    $$x - \frac{6}{x} = -1$$
    Домножим обе части ур-ния на знаменатели:
    и x
    получим:
    $$x \left(x - \frac{6}{x}\right) = - x$$
    $$x^{2} - 6 = - x$$
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    $$x^{2} - 6 = - x$$
    в
    $$x^{2} + x - 6 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 1$$
    $$c = -6$$
    , то
    D = b^2 - 4 * a * c = 

    (1)^2 - 4 * (1) * (-6) = 25

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 2$$
    $$x_{2} = -3$$
    График
    Быстрый ответ [src]
    x1 = -3
    $$x_{1} = -3$$
    x2 = 2
    $$x_{2} = 2$$
    Численный ответ [src]
    x1 = 2.0
    x2 = -3.0
    График
    x-(6/x)=-1 (уравнение) /media/krcore-image-pods/hash/equation/e/83/42527539e6ba8ce931ea504b5c598.png