Решите уравнение (x-3)(x+12)=9x ((х минус 3)(х плюс 12) равно 9 х) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

(x-3)(x+12)=9x (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (x-3)(x+12)=9x

    Решение

    Вы ввели [src]
    (x - 3)*(x + 12) = 9*x
    $$\left(x + 12\right) \left(x - 3\right) = 9 x$$
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    $$\left(x + 12\right) \left(x - 3\right) = 9 x$$
    в
    $$- 9 x + \left(x + 12\right) \left(x - 3\right) = 0$$
    Раскроем выражение в уравнении
    $$- 9 x + \left(x + 12\right) \left(x - 3\right) = 0$$
    Получаем квадратное уравнение
    $$x^{2} - 36 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 0$$
    $$c = -36$$
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (-36) = 144

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 6$$
    Упростить
    $$x_{2} = -6$$
    Упростить
    График
    Быстрый ответ [src]
    x1 = -6
    $$x_{1} = -6$$
    x2 = 6
    $$x_{2} = 6$$
    Сумма и произведение корней [src]
    сумма
    0 - 6 + 6
    $$\left(-6 + 0\right) + 6$$
    =
    0
    $$0$$
    произведение
    1*-6*6
    $$1 \left(-6\right) 6$$
    =
    -36
    $$-36$$
    Численный ответ [src]
    x1 = -6.0
    x2 = 6.0
    График
    (x-3)(x+12)=9x (уравнение) /media/krcore-image-pods/hash/equation/6/57/992d92e72a1691392ee3238f08832.png