Решите уравнение x+1-xy-y=0 (х плюс 1 минус х у минус у равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

x+1-xy-y=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x+1-xy-y=0

    Решение

    Вы ввели [src]
    x + 1 - x*y - y = 0
    $$- y + \left(- x y + \left(x + 1\right)\right) = 0$$
    Подробное решение
    Дано линейное уравнение:
    x+1-x*y-y = 0

    Приводим подобные слагаемые в левой части ур-ния:
    1 + x - y - x*y = 0

    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    $$- x y + x - y = -1$$
    Переносим слагаемые с другими переменными
    из левой части в правую, получим:
    $$- x y + x = y - 1$$
    Разделим обе части ур-ния на (x - x*y)/x
    x = -1 + y / ((x - x*y)/x)

    Получим ответ: x = -1
    График
    Быстрый ответ [src]
    x1 = -1
    $$x_{1} = -1$$
    Сумма и произведение корней [src]
    сумма
    -1
    $$-1$$
    =
    -1
    $$-1$$
    произведение
    -1
    $$-1$$
    =
    -1
    $$-1$$
    Решение параметрического уравнения
    Дано уравнение с параметром:
    $$- x y + x - y + 1 = 0$$
    Коэффициент при x равен
    $$1 - y$$
    тогда возможные случаи для y :
    $$y < 1$$
    $$y = 1$$
    Рассмотри все случаи подробнее:
    При
    $$y < 1$$
    уравнение будет
    $$x + 1 = 0$$
    его решение
    $$x = -1$$
    При
    $$y = 1$$
    уравнение будет
    $$0 = 0$$
    его решение
    любое x