x 1 = − 7 − 7 32 x_{1} = -7 - \sqrt[32]{7} x 1 = − 7 − 32 7 x 2 = − 7 + 7 32 x_{2} = -7 + \sqrt[32]{7} x 2 = − 7 + 32 7 / / ___________\\ / / ___________\\
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - - ----- || | | / - - ----- ||
| |\/ 2 4 || | |\/ 2 4 ||
|atan|----------------|| |atan|----------------||
| | ___________|| | | ___________||
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - + ----- || | | / - + ----- ||
32___ | \\/ 2 4 /| 32___ | \\/ 2 4 /|
x3 = -7 - \/ 7 *sin|----------------------| + I*\/ 7 *cos|----------------------|
\ 2 / \ 2 / x 3 = − 7 − 7 32 sin ( 1 2 atan ( − 2 4 + 1 2 2 4 + 1 2 ) ) + 7 32 i cos ( 1 2 atan ( − 2 4 + 1 2 2 4 + 1 2 ) ) x_{3} = -7 - \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} + \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} x 3 = − 7 − 32 7 sin 2 1 atan 4 2 + 2 1 − 4 2 + 2 1 + 32 7 i cos 2 1 atan 4 2 + 2 1 − 4 2 + 2 1 / / ___________\\ / / ___________\\
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - - ----- || | | / - - ----- ||
| |\/ 2 4 || | |\/ 2 4 ||
|atan|----------------|| |atan|----------------||
| | ___________|| | | ___________||
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - + ----- || | | / - + ----- ||
32___ | \\/ 2 4 /| 32___ | \\/ 2 4 /|
x4 = -7 + \/ 7 *sin|----------------------| - I*\/ 7 *cos|----------------------|
\ 2 / \ 2 / x 4 = − 7 + 7 32 sin ( 1 2 atan ( − 2 4 + 1 2 2 4 + 1 2 ) ) − 7 32 i cos ( 1 2 atan ( − 2 4 + 1 2 2 4 + 1 2 ) ) x_{4} = -7 + \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} - \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} x 4 = − 7 + 32 7 sin 2 1 atan 4 2 + 2 1 − 4 2 + 2 1 − 32 7 i cos 2 1 atan 4 2 + 2 1 − 4 2 + 2 1 / / ___________\\ / / ___________\\
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - + ----- || | | / - + ----- ||
| |\/ 2 4 || | |\/ 2 4 ||
|atan|----------------|| |atan|----------------||
| | ___________|| | | ___________||
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - - ----- || | | / - - ----- ||
32___ | \\/ 2 4 /| 32___ | \\/ 2 4 /|
x5 = -7 - \/ 7 *sin|----------------------| - I*\/ 7 *cos|----------------------|
\ 2 / \ 2 / x 5 = − 7 − 7 32 sin ( 1 2 atan ( 2 4 + 1 2 − 2 4 + 1 2 ) ) − 7 32 i cos ( 1 2 atan ( 2 4 + 1 2 − 2 4 + 1 2 ) ) x_{5} = -7 - \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} - \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} x 5 = − 7 − 32 7 sin 2 1 atan − 4 2 + 2 1 4 2 + 2 1 − 32 7 i cos 2 1 atan − 4 2 + 2 1 4 2 + 2 1 / / ___________\\ / / ___________\\
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - + ----- || | | / - + ----- ||
| |\/ 2 4 || | |\/ 2 4 ||
|atan|----------------|| |atan|----------------||
| | ___________|| | | ___________||
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - - ----- || | | / - - ----- ||
32___ | \\/ 2 4 /| 32___ | \\/ 2 4 /|
x6 = -7 + \/ 7 *sin|----------------------| + I*\/ 7 *cos|----------------------|
\ 2 / \ 2 / x 6 = − 7 + 7 32 sin ( 1 2 atan ( 2 4 + 1 2 − 2 4 + 1 2 ) ) + 7 32 i cos ( 1 2 atan ( 2 4 + 1 2 − 2 4 + 1 2 ) ) x_{6} = -7 + \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} + \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} x 6 = − 7 + 32 7 sin 2 1 atan − 4 2 + 2 1 4 2 + 2 1 + 32 7 i cos 2 1 atan − 4 2 + 2 1 4 2 + 2 1 / / ___________\\ / / ___________\\
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - - ----- || | | / - - ----- ||
| |\/ 2 4 || | |\/ 2 4 ||
|atan|----------------|| |atan|----------------||
| | ___________|| | | ___________||
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - + ----- || | | / - + ----- ||
32___ | \\/ 2 4 /| 32___ | \\/ 2 4 /|
x7 = -7 - \/ 7 *sin|----------------------| - I*\/ 7 *cos|----------------------|
\ 2 / \ 2 / x 7 = − 7 − 7 32 sin ( 1 2 atan ( − 2 4 + 1 2 2 4 + 1 2 ) ) − 7 32 i cos ( 1 2 atan ( − 2 4 + 1 2 2 4 + 1 2 ) ) x_{7} = -7 - \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} - \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} x 7 = − 7 − 32 7 sin 2 1 atan 4 2 + 2 1 − 4 2 + 2 1 − 32 7 i cos 2 1 atan 4 2 + 2 1 − 4 2 + 2 1 / / ___________\\ / / ___________\\
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - - ----- || | | / - - ----- ||
| |\/ 2 4 || | |\/ 2 4 ||
|atan|----------------|| |atan|----------------||
| | ___________|| | | ___________||
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - + ----- || | | / - + ----- ||
32___ | \\/ 2 4 /| 32___ | \\/ 2 4 /|
x8 = -7 + \/ 7 *sin|----------------------| + I*\/ 7 *cos|----------------------|
\ 2 / \ 2 / x 8 = − 7 + 7 32 sin ( 1 2 atan ( − 2 4 + 1 2 2 4 + 1 2 ) ) + 7 32 i cos ( 1 2 atan ( − 2 4 + 1 2 2 4 + 1 2 ) ) x_{8} = -7 + \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} + \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} x 8 = − 7 + 32 7 sin 2 1 atan 4 2 + 2 1 − 4 2 + 2 1 + 32 7 i cos 2 1 atan 4 2 + 2 1 − 4 2 + 2 1 / / ___________\\ / / ___________\\
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - + ----- || | | / - + ----- ||
| |\/ 2 4 || | |\/ 2 4 ||
|atan|----------------|| |atan|----------------||
| | ___________|| | | ___________||
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - - ----- || | | / - - ----- ||
32___ | \\/ 2 4 /| 32___ | \\/ 2 4 /|
x9 = -7 - \/ 7 *sin|----------------------| + I*\/ 7 *cos|----------------------|
\ 2 / \ 2 / x 9 = − 7 − 7 32 sin ( 1 2 atan ( 2 4 + 1 2 − 2 4 + 1 2 ) ) + 7 32 i cos ( 1 2 atan ( 2 4 + 1 2 − 2 4 + 1 2 ) ) x_{9} = -7 - \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} + \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} x 9 = − 7 − 32 7 sin 2 1 atan − 4 2 + 2 1 4 2 + 2 1 + 32 7 i cos 2 1 atan − 4 2 + 2 1 4 2 + 2 1 / / ___________\\ / / ___________\\
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - + ----- || | | / - + ----- ||
| |\/ 2 4 || | |\/ 2 4 ||
|atan|----------------|| |atan|----------------||
| | ___________|| | | ___________||
| | / ___ || | | / ___ ||
| | / 1 \/ 2 || | | / 1 \/ 2 ||
| | / - - ----- || | | / - - ----- ||
32___ | \\/ 2 4 /| 32___ | \\/ 2 4 /|
x10 = -7 + \/ 7 *sin|----------------------| - I*\/ 7 *cos|----------------------|
\ 2 / \ 2 / x 10 = − 7 + 7 32 sin ( 1 2 atan ( 2 4 + 1 2 − 2 4 + 1 2 ) ) − 7 32 i cos ( 1 2 atan ( 2 4 + 1 2 − 2 4 + 1 2 ) ) x_{10} = -7 + \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} - \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} x 10 = − 7 + 32 7 sin 2 1 atan − 4 2 + 2 1 4 2 + 2 1 − 32 7 i cos 2 1 atan − 4 2 + 2 1 4 2 + 2 1 32___ /pi\ 32___ /pi\
x11 = -7 - \/ 7 *cos|--| - I*\/ 7 *sin|--|
\16/ \16/ x 11 = − 7 − 7 32 cos ( π 16 ) − 7 32 i sin ( π 16 ) x_{11} = -7 - \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )} x 11 = − 7 − 32 7 cos ( 16 π ) − 32 7 i sin ( 16 π ) 32___ /pi\ 32___ /pi\
x12 = -7 + \/ 7 *cos|--| + I*\/ 7 *sin|--|
\16/ \16/ x 12 = − 7 + 7 32 cos ( π 16 ) + 7 32 i sin ( π 16 ) x_{12} = -7 + \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )} x 12 = − 7 + 32 7 cos ( 16 π ) + 32 7 i sin ( 16 π ) ___________ ___________
/ ___ / ___
32___ / 1 \/ 2 32___ / 1 \/ 2
x13 = -7 - \/ 7 * / - + ----- - I*\/ 7 * / - - -----
\/ 2 4 \/ 2 4 x 13 = − 7 − 7 32 2 4 + 1 2 − 7 32 i − 2 4 + 1 2 x_{13} = -7 - \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} x 13 = − 7 − 32 7 4 2 + 2 1 − 32 7 i − 4 2 + 2 1 ___________ ___________
/ ___ / ___
32___ / 1 \/ 2 32___ / 1 \/ 2
x14 = -7 + \/ 7 * / - + ----- + I*\/ 7 * / - - -----
\/ 2 4 \/ 2 4 x 14 = − 7 + 7 32 2 4 + 1 2 + 7 32 i − 2 4 + 1 2 x_{14} = -7 + \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} x 14 = − 7 + 32 7 4 2 + 2 1 + 32 7 i − 4 2 + 2 1 ___ 32___ ___ 32___
\/ 2 *\/ 7 I*\/ 2 *\/ 7
x15 = -7 - ----------- - -------------
2 2 x 15 = − 7 − 2 7 32 2 − 2 i 2 7 32 x_{15} = -7 - \frac{\sqrt{2} \sqrt[32]{7}}{2} - \frac{\sqrt{2} i}{2} \sqrt[32]{7} x 15 = − 7 − 2 2 32 7 − 2 2 i 32 7 ___ 32___ ___ 32___
\/ 2 *\/ 7 I*\/ 2 *\/ 7
x16 = -7 + ----------- + -------------
2 2 x 16 = − 7 + 2 7 32 2 + 2 i 2 7 32 x_{16} = -7 + \frac{\sqrt{2} \sqrt[32]{7}}{2} + \frac{\sqrt{2} i}{2} \sqrt[32]{7} x 16 = − 7 + 2 2 32 7 + 2 2 i 32 7 x 17 = − 7 − 7 32 i x_{17} = -7 - \sqrt[32]{7} i x 17 = − 7 − 32 7 i x 18 = − 7 + 7 32 i x_{18} = -7 + \sqrt[32]{7} i x 18 = − 7 + 32 7 i 32___ /3*pi\ 32___ /3*pi\
x19 = -7 - \/ 7 *cos|----| + I*\/ 7 *sin|----|
\ 16 / \ 16 / x 19 = − 7 − 7 32 cos ( 3 π 16 ) + 7 32 i sin ( 3 π 16 ) x_{19} = -7 - \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )} x 19 = − 7 − 32 7 cos ( 16 3 π ) + 32 7 i sin ( 16 3 π ) 32___ /3*pi\ 32___ /3*pi\
x20 = -7 + \/ 7 *cos|----| - I*\/ 7 *sin|----|
\ 16 / \ 16 / x 20 = − 7 + 7 32 cos ( 3 π 16 ) − 7 32 i sin ( 3 π 16 ) x_{20} = -7 + \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )} x 20 = − 7 + 32 7 cos ( 16 3 π ) − 32 7 i sin ( 16 3 π ) ___________ ___________
/ ___ / ___
32___ / 1 \/ 2 32___ / 1 \/ 2
x21 = -7 - \/ 7 * / - - ----- + I*\/ 7 * / - + -----
\/ 2 4 \/ 2 4 x 21 = − 7 − 7 32 − 2 4 + 1 2 + 7 32 i 2 4 + 1 2 x_{21} = -7 - \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} x 21 = − 7 − 32 7 − 4 2 + 2 1 + 32 7 i 4 2 + 2 1 ___________ ___________
/ ___ / ___
32___ / 1 \/ 2 32___ / 1 \/ 2
x22 = -7 + \/ 7 * / - - ----- - I*\/ 7 * / - + -----
\/ 2 4 \/ 2 4 x 22 = − 7 + 7 32 − 2 4 + 1 2 − 7 32 i 2 4 + 1 2 x_{22} = -7 + \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} x 22 = − 7 + 32 7 − 4 2 + 2 1 − 32 7 i 4 2 + 2 1 32___ /pi\ 32___ /pi\
x23 = -7 - \/ 7 *cos|--| + I*\/ 7 *sin|--|
\16/ \16/ x 23 = − 7 − 7 32 cos ( π 16 ) + 7 32 i sin ( π 16 ) x_{23} = -7 - \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )} x 23 = − 7 − 32 7 cos ( 16 π ) + 32 7 i sin ( 16 π ) 32___ /pi\ 32___ /pi\
x24 = -7 + \/ 7 *cos|--| - I*\/ 7 *sin|--|
\16/ \16/ x 24 = − 7 + 7 32 cos ( π 16 ) − 7 32 i sin ( π 16 ) x_{24} = -7 + \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )} x 24 = − 7 + 32 7 cos ( 16 π ) − 32 7 i sin ( 16 π ) ___________ ___________
/ ___ / ___
32___ / 1 \/ 2 32___ / 1 \/ 2
x25 = -7 - \/ 7 * / - + ----- + I*\/ 7 * / - - -----
\/ 2 4 \/ 2 4 x 25 = − 7 − 7 32 2 4 + 1 2 + 7 32 i − 2 4 + 1 2 x_{25} = -7 - \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} x 25 = − 7 − 32 7 4 2 + 2 1 + 32 7 i − 4 2 + 2 1 ___________ ___________
/ ___ / ___
32___ / 1 \/ 2 32___ / 1 \/ 2
x26 = -7 + \/ 7 * / - + ----- - I*\/ 7 * / - - -----
\/ 2 4 \/ 2 4 x 26 = − 7 + 7 32 2 4 + 1 2 − 7 32 i − 2 4 + 1 2 x_{26} = -7 + \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} x 26 = − 7 + 32 7 4 2 + 2 1 − 32 7 i − 4 2 + 2 1 ___ 32___ ___ 32___
\/ 2 *\/ 7 I*\/ 2 *\/ 7
x27 = -7 - ----------- + -------------
2 2 x 27 = − 7 − 2 7 32 2 + 2 i 2 7 32 x_{27} = -7 - \frac{\sqrt{2} \sqrt[32]{7}}{2} + \frac{\sqrt{2} i}{2} \sqrt[32]{7} x 27 = − 7 − 2 2 32 7 + 2 2 i 32 7 ___ 32___ ___ 32___
\/ 2 *\/ 7 I*\/ 2 *\/ 7
x28 = -7 + ----------- - -------------
2 2 x 28 = − 7 + 2 7 32 2 − 2 i 2 7 32 x_{28} = -7 + \frac{\sqrt{2} \sqrt[32]{7}}{2} - \frac{\sqrt{2} i}{2} \sqrt[32]{7} x 28 = − 7 + 2 2 32 7 − 2 2 i 32 7 32___ /3*pi\ 32___ /3*pi\
x29 = -7 + \/ 7 *cos|----| + I*\/ 7 *sin|----|
\ 16 / \ 16 / x 29 = − 7 + 7 32 cos ( 3 π 16 ) + 7 32 i sin ( 3 π 16 ) x_{29} = -7 + \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )} x 29 = − 7 + 32 7 cos ( 16 3 π ) + 32 7 i sin ( 16 3 π ) 32___ /3*pi\ 32___ /3*pi\
x30 = -7 - \/ 7 *cos|----| - I*\/ 7 *sin|----|
\ 16 / \ 16 / x 30 = − 7 − 7 32 cos ( 3 π 16 ) − 7 32 i sin ( 3 π 16 ) x_{30} = -7 - \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )} x 30 = − 7 − 32 7 cos ( 16 3 π ) − 32 7 i sin ( 16 3 π ) ___________ ___________
/ ___ / ___
32___ / 1 \/ 2 32___ / 1 \/ 2
x31 = -7 - \/ 7 * / - - ----- - I*\/ 7 * / - + -----
\/ 2 4 \/ 2 4 x 31 = − 7 − 7 32 − 2 4 + 1 2 − 7 32 i 2 4 + 1 2 x_{31} = -7 - \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} x 31 = − 7 − 32 7 − 4 2 + 2 1 − 32 7 i 4 2 + 2 1 ___________ ___________
/ ___ / ___
32___ / 1 \/ 2 32___ / 1 \/ 2
x32 = -7 + \/ 7 * / - - ----- + I*\/ 7 * / - + -----
\/ 2 4 \/ 2 4 x 32 = − 7 + 7 32 − 2 4 + 1 2 + 7 32 i 2 4 + 1 2 x_{32} = -7 + \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} x 32 = − 7 + 32 7 − 4 2 + 2 1 + 32 7 i 4 2 + 2 1 x1 = -6.40959737151 + 0.88359997609*i x2 = -7.0 + 1.06269665543*i x3 = -7.0 - 1.06269665543*i x4 = -6.59332359634 + 0.981803689224*i x5 = -6.79267816729 + 1.04227723718*i x6 = -8.04227723718 - 0.207321832714*i x7 = -7.98180368922 + 0.406676403665*i x8 = -6.11640002391 + 0.590402628489*i x11 = -7.40667640366 + 0.981803689224*i x12 = -5.95772276282 - 0.207321832714*i x13 = -6.59332359634 - 0.981803689224*i x14 = -7.20732183271 - 1.04227723718*i x15 = -6.01819631078 - 0.406676403665*i x16 = -7.88359997609 - 0.590402628489*i x17 = -6.01819631078 + 0.406676403665*i x18 = -7.59040262849 + 0.88359997609*i x19 = -7.59040262849 - 0.88359997609*i x20 = -6.2485599886 - 0.751440011402*i x21 = -7.20732183271 + 1.04227723718*i x22 = -7.98180368922 - 0.406676403665*i x23 = -6.79267816729 - 1.04227723718*i x24 = -6.2485599886 + 0.751440011402*i x25 = -8.04227723718 + 0.207321832714*i x26 = -6.11640002391 - 0.590402628489*i x27 = -7.40667640366 - 0.981803689224*i x28 = -6.40959737151 - 0.88359997609*i x29 = -5.95772276282 + 0.207321832714*i x30 = -7.7514400114 - 0.751440011402*i x31 = -7.7514400114 + 0.751440011402*i x32 = -7.88359997609 + 0.590402628489*i