(x+7)^32=7 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (x+7)^32=7

    Решение

    Вы ввели [src]
           32    
    (x + 7)   = 7
    (x+7)32=7\left(x + 7\right)^{32} = 7
    Подробное решение
    Дано уравнение
    (x+7)32=7\left(x + 7\right)^{32} = 7
    Т.к. степень в ур-нии равна = 32 - содержит чётное число 32 в числителе, то
    ур-ние будет иметь два действительных корня.
    Извлечём корень 32-й степени из обеих частей ур-ния:
    Получим:
    (x+7)3232=732\sqrt[32]{\left(x + 7\right)^{32}} = \sqrt[32]{7}
    (x+7)3232=1732\sqrt[32]{\left(x + 7\right)^{32}} = -1 \sqrt[32]{7}
    или
    x+7=732x + 7 = \sqrt[32]{7}
    x+7=732x + 7 = - \sqrt[32]{7}
    Раскрываем скобочки в правой части ур-ния
    7 + x = 7^1/32

    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    x=7+732x = -7 + \sqrt[32]{7}
    Получим ответ: x = -7 + 7^(1/32)
    Раскрываем скобочки в правой части ур-ния
    7 + x = -7^1/32

    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
             32___
    x = -7 - \/ 7 

    Получим ответ: x = -7 - 7^(1/32)
    или
    x1=7732x_{1} = -7 - \sqrt[32]{7}
    x2=7+732x_{2} = -7 + \sqrt[32]{7}

    Остальные 30 корня(ей) являются комплексными.
    сделаем замену:
    z=x+7z = x + 7
    тогда ур-ние будет таким:
    z32=7z^{32} = 7
    Любое комплексное число можно представить так:
    z=reipz = r e^{i p}
    подставляем в уравнение
    r32e32ip=7r^{32} e^{32 i p} = 7
    где
    r=732r = \sqrt[32]{7}
    - модуль комплексного числа
    Подставляем r:
    e32ip=1e^{32 i p} = 1
    Используя формулу Эйлера, найдём корни для p
    isin(32p)+cos(32p)=1i \sin{\left (32 p \right )} + \cos{\left (32 p \right )} = 1
    значит
    cos(32p)=1\cos{\left (32 p \right )} = 1
    и
    sin(32p)=0\sin{\left (32 p \right )} = 0
    тогда
    p=πN16p = \frac{\pi N}{16}
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    z1=732z_{1} = - \sqrt[32]{7}
    z2=732z_{2} = \sqrt[32]{7}
    z3=732iz_{3} = - \sqrt[32]{7} i
    z4=732iz_{4} = \sqrt[32]{7} i
    z5=273222i2732z_{5} = - \frac{\sqrt{2} \sqrt[32]{7}}{2} - \frac{\sqrt{2} i}{2} \sqrt[32]{7}
    z6=27322+2i2732z_{6} = - \frac{\sqrt{2} \sqrt[32]{7}}{2} + \frac{\sqrt{2} i}{2} \sqrt[32]{7}
    z7=273222i2732z_{7} = \frac{\sqrt{2} \sqrt[32]{7}}{2} - \frac{\sqrt{2} i}{2} \sqrt[32]{7}
    z8=27322+2i2732z_{8} = \frac{\sqrt{2} \sqrt[32]{7}}{2} + \frac{\sqrt{2} i}{2} \sqrt[32]{7}
    z9=73224+12732i24+12z_{9} = - \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
    z10=73224+12+732i24+12z_{10} = - \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
    z11=73224+12732i24+12z_{11} = \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
    z12=73224+12+732i24+12z_{12} = \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
    z13=73224+12732i24+12z_{13} = - \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
    z14=73224+12+732i24+12z_{14} = - \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
    z15=73224+12732i24+12z_{15} = \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
    z16=73224+12+732i24+12z_{16} = \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
    z17=732cos(π16)732isin(π16)z_{17} = - \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
    z18=732cos(π16)+732isin(π16)z_{18} = - \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
    z19=732cos(π16)732isin(π16)z_{19} = \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
    z20=732cos(π16)+732isin(π16)z_{20} = \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
    z21=732cos(3π16)732isin(3π16)z_{21} = - \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
    z22=732cos(3π16)+732isin(3π16)z_{22} = - \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
    z23=732cos(3π16)732isin(3π16)z_{23} = \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
    z24=732cos(3π16)+732isin(3π16)z_{24} = \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
    z25=732cos(5π16)732isin(5π16)z_{25} = - \sqrt[32]{7} \cos{\left (\frac{5 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{5 \pi}{16} \right )}
    z26=732cos(5π16)+732isin(5π16)z_{26} = - \sqrt[32]{7} \cos{\left (\frac{5 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{5 \pi}{16} \right )}
    z27=732cos(5π16)732isin(5π16)z_{27} = \sqrt[32]{7} \cos{\left (\frac{5 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{5 \pi}{16} \right )}
    z28=732cos(5π16)+732isin(5π16)z_{28} = \sqrt[32]{7} \cos{\left (\frac{5 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{5 \pi}{16} \right )}
    z29=732cos(7π16)732isin(7π16)z_{29} = - \sqrt[32]{7} \cos{\left (\frac{7 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{7 \pi}{16} \right )}
    z30=732cos(7π16)+732isin(7π16)z_{30} = - \sqrt[32]{7} \cos{\left (\frac{7 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{7 \pi}{16} \right )}
    z31=732cos(7π16)732isin(7π16)z_{31} = \sqrt[32]{7} \cos{\left (\frac{7 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{7 \pi}{16} \right )}
    z32=732cos(7π16)+732isin(7π16)z_{32} = \sqrt[32]{7} \cos{\left (\frac{7 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{7 \pi}{16} \right )}
    делаем обратную замену
    z=x+7z = x + 7
    x=z7x = z - 7

    Тогда, окончательный ответ:
    x1=7732x_{1} = -7 - \sqrt[32]{7}
    x2=7+732x_{2} = -7 + \sqrt[32]{7}
    x3=7732ix_{3} = -7 - \sqrt[32]{7} i
    x4=7+732ix_{4} = -7 + \sqrt[32]{7} i
    x5=7273222i2732x_{5} = -7 - \frac{\sqrt{2} \sqrt[32]{7}}{2} - \frac{\sqrt{2} i}{2} \sqrt[32]{7}
    x6=727322+2i2732x_{6} = -7 - \frac{\sqrt{2} \sqrt[32]{7}}{2} + \frac{\sqrt{2} i}{2} \sqrt[32]{7}
    x7=7+273222i2732x_{7} = -7 + \frac{\sqrt{2} \sqrt[32]{7}}{2} - \frac{\sqrt{2} i}{2} \sqrt[32]{7}
    x8=7+27322+2i2732x_{8} = -7 + \frac{\sqrt{2} \sqrt[32]{7}}{2} + \frac{\sqrt{2} i}{2} \sqrt[32]{7}
    x9=773224+12732i24+12x_{9} = -7 - \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
    x10=773224+12+732i24+12x_{10} = -7 - \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
    x11=7+73224+12732i24+12x_{11} = -7 + \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
    x12=7+73224+12+732i24+12x_{12} = -7 + \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
    x13=773224+12732i24+12x_{13} = -7 - \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
    x14=773224+12+732i24+12x_{14} = -7 - \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
    x15=7+73224+12732i24+12x_{15} = -7 + \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
    x16=7+73224+12+732i24+12x_{16} = -7 + \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
    x17=7732cos(π16)732isin(π16)x_{17} = -7 - \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
    x18=7732cos(π16)+732isin(π16)x_{18} = -7 - \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
    x19=7+732cos(π16)732isin(π16)x_{19} = -7 + \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
    x20=7+732cos(π16)+732isin(π16)x_{20} = -7 + \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
    x21=7732cos(3π16)732isin(3π16)x_{21} = -7 - \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
    x22=7732cos(3π16)+732isin(3π16)x_{22} = -7 - \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
    x23=7+732cos(3π16)732isin(3π16)x_{23} = -7 + \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
    x24=7+732cos(3π16)+732isin(3π16)x_{24} = -7 + \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
    x25=7732cos(5π16)732isin(5π16)x_{25} = -7 - \sqrt[32]{7} \cos{\left (\frac{5 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{5 \pi}{16} \right )}
    x26=7732cos(5π16)+732isin(5π16)x_{26} = -7 - \sqrt[32]{7} \cos{\left (\frac{5 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{5 \pi}{16} \right )}
    x27=7+732cos(5π16)732isin(5π16)x_{27} = -7 + \sqrt[32]{7} \cos{\left (\frac{5 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{5 \pi}{16} \right )}
    x28=7+732cos(5π16)+732isin(5π16)x_{28} = -7 + \sqrt[32]{7} \cos{\left (\frac{5 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{5 \pi}{16} \right )}
    x29=7732cos(7π16)732isin(7π16)x_{29} = -7 - \sqrt[32]{7} \cos{\left (\frac{7 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{7 \pi}{16} \right )}
    x30=7732cos(7π16)+732isin(7π16)x_{30} = -7 - \sqrt[32]{7} \cos{\left (\frac{7 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{7 \pi}{16} \right )}
    x31=7+732cos(7π16)732isin(7π16)x_{31} = -7 + \sqrt[32]{7} \cos{\left (\frac{7 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{7 \pi}{16} \right )}
    x32=7+732cos(7π16)+732isin(7π16)x_{32} = -7 + \sqrt[32]{7} \cos{\left (\frac{7 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{7 \pi}{16} \right )}
    График
    0246-10-8-6-4-205e33
    Быстрый ответ [src]
              32___
    x1 = -7 - \/ 7 
    x1=7732x_{1} = -7 - \sqrt[32]{7}
              32___
    x2 = -7 + \/ 7 
    x2=7+732x_{2} = -7 + \sqrt[32]{7}
                       /    /     ___________\\              /    /     ___________\\
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - - ----- ||              |    |  /   - - ----- ||
                       |    |\/    2     4   ||              |    |\/    2     4   ||
                       |atan|----------------||              |atan|----------------||
                       |    |     ___________||              |    |     ___________||
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - + ----- ||              |    |  /   - + ----- ||
              32___    |    \\/    2     4   /|     32___    |    \\/    2     4   /|
    x3 = -7 - \/ 7 *sin|----------------------| + I*\/ 7 *cos|----------------------|
                       \          2           /              \          2           /
    x3=7732sin(12atan(24+1224+12))+732icos(12atan(24+1224+12))x_{3} = -7 - \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} + \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )}
                       /    /     ___________\\              /    /     ___________\\
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - - ----- ||              |    |  /   - - ----- ||
                       |    |\/    2     4   ||              |    |\/    2     4   ||
                       |atan|----------------||              |atan|----------------||
                       |    |     ___________||              |    |     ___________||
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - + ----- ||              |    |  /   - + ----- ||
              32___    |    \\/    2     4   /|     32___    |    \\/    2     4   /|
    x4 = -7 + \/ 7 *sin|----------------------| - I*\/ 7 *cos|----------------------|
                       \          2           /              \          2           /
    x4=7+732sin(12atan(24+1224+12))732icos(12atan(24+1224+12))x_{4} = -7 + \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} - \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )}
                       /    /     ___________\\              /    /     ___________\\
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - + ----- ||              |    |  /   - + ----- ||
                       |    |\/    2     4   ||              |    |\/    2     4   ||
                       |atan|----------------||              |atan|----------------||
                       |    |     ___________||              |    |     ___________||
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - - ----- ||              |    |  /   - - ----- ||
              32___    |    \\/    2     4   /|     32___    |    \\/    2     4   /|
    x5 = -7 - \/ 7 *sin|----------------------| - I*\/ 7 *cos|----------------------|
                       \          2           /              \          2           /
    x5=7732sin(12atan(24+1224+12))732icos(12atan(24+1224+12))x_{5} = -7 - \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} - \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )}
                       /    /     ___________\\              /    /     ___________\\
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - + ----- ||              |    |  /   - + ----- ||
                       |    |\/    2     4   ||              |    |\/    2     4   ||
                       |atan|----------------||              |atan|----------------||
                       |    |     ___________||              |    |     ___________||
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - - ----- ||              |    |  /   - - ----- ||
              32___    |    \\/    2     4   /|     32___    |    \\/    2     4   /|
    x6 = -7 + \/ 7 *sin|----------------------| + I*\/ 7 *cos|----------------------|
                       \          2           /              \          2           /
    x6=7+732sin(12atan(24+1224+12))+732icos(12atan(24+1224+12))x_{6} = -7 + \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} + \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )}
                       /    /     ___________\\              /    /     ___________\\
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - - ----- ||              |    |  /   - - ----- ||
                       |    |\/    2     4   ||              |    |\/    2     4   ||
                       |atan|----------------||              |atan|----------------||
                       |    |     ___________||              |    |     ___________||
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - + ----- ||              |    |  /   - + ----- ||
              32___    |    \\/    2     4   /|     32___    |    \\/    2     4   /|
    x7 = -7 - \/ 7 *sin|----------------------| - I*\/ 7 *cos|----------------------|
                       \          2           /              \          2           /
    x7=7732sin(12atan(24+1224+12))732icos(12atan(24+1224+12))x_{7} = -7 - \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} - \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )}
                       /    /     ___________\\              /    /     ___________\\
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - - ----- ||              |    |  /   - - ----- ||
                       |    |\/    2     4   ||              |    |\/    2     4   ||
                       |atan|----------------||              |atan|----------------||
                       |    |     ___________||              |    |     ___________||
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - + ----- ||              |    |  /   - + ----- ||
              32___    |    \\/    2     4   /|     32___    |    \\/    2     4   /|
    x8 = -7 + \/ 7 *sin|----------------------| + I*\/ 7 *cos|----------------------|
                       \          2           /              \          2           /
    x8=7+732sin(12atan(24+1224+12))+732icos(12atan(24+1224+12))x_{8} = -7 + \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} + \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )}
                       /    /     ___________\\              /    /     ___________\\
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - + ----- ||              |    |  /   - + ----- ||
                       |    |\/    2     4   ||              |    |\/    2     4   ||
                       |atan|----------------||              |atan|----------------||
                       |    |     ___________||              |    |     ___________||
                       |    |    /       ___ ||              |    |    /       ___ ||
                       |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                       |    |  /   - - ----- ||              |    |  /   - - ----- ||
              32___    |    \\/    2     4   /|     32___    |    \\/    2     4   /|
    x9 = -7 - \/ 7 *sin|----------------------| + I*\/ 7 *cos|----------------------|
                       \          2           /              \          2           /
    x9=7732sin(12atan(24+1224+12))+732icos(12atan(24+1224+12))x_{9} = -7 - \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} + \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )}
                        /    /     ___________\\              /    /     ___________\\
                        |    |    /       ___ ||              |    |    /       ___ ||
                        |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                        |    |  /   - + ----- ||              |    |  /   - + ----- ||
                        |    |\/    2     4   ||              |    |\/    2     4   ||
                        |atan|----------------||              |atan|----------------||
                        |    |     ___________||              |    |     ___________||
                        |    |    /       ___ ||              |    |    /       ___ ||
                        |    |   /  1   \/ 2  ||              |    |   /  1   \/ 2  ||
                        |    |  /   - - ----- ||              |    |  /   - - ----- ||
               32___    |    \\/    2     4   /|     32___    |    \\/    2     4   /|
    x10 = -7 + \/ 7 *sin|----------------------| - I*\/ 7 *cos|----------------------|
                        \          2           /              \          2           /
    x10=7+732sin(12atan(24+1224+12))732icos(12atan(24+1224+12))x_{10} = -7 + \sqrt[32]{7} \sin{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )} - \sqrt[32]{7} i \cos{\left (\frac{1}{2} \operatorname{atan}{\left (\frac{\sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{\sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}} \right )} \right )}
               32___    /pi\     32___    /pi\
    x11 = -7 - \/ 7 *cos|--| - I*\/ 7 *sin|--|
                        \16/              \16/
    x11=7732cos(π16)732isin(π16)x_{11} = -7 - \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
               32___    /pi\     32___    /pi\
    x12 = -7 + \/ 7 *cos|--| + I*\/ 7 *sin|--|
                        \16/              \16/
    x12=7+732cos(π16)+732isin(π16)x_{12} = -7 + \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
                          ___________                ___________
                         /       ___                /       ___ 
               32___    /  1   \/ 2       32___    /  1   \/ 2  
    x13 = -7 - \/ 7 *  /   - + -----  - I*\/ 7 *  /   - - ----- 
                     \/    2     4              \/    2     4   
    x13=773224+12732i24+12x_{13} = -7 - \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
                          ___________                ___________
                         /       ___                /       ___ 
               32___    /  1   \/ 2       32___    /  1   \/ 2  
    x14 = -7 + \/ 7 *  /   - + -----  + I*\/ 7 *  /   - - ----- 
                     \/    2     4              \/    2     4   
    x14=7+73224+12+732i24+12x_{14} = -7 + \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
                 ___ 32___       ___ 32___
               \/ 2 *\/ 7    I*\/ 2 *\/ 7 
    x15 = -7 - ----------- - -------------
                    2              2      
    x15=7273222i2732x_{15} = -7 - \frac{\sqrt{2} \sqrt[32]{7}}{2} - \frac{\sqrt{2} i}{2} \sqrt[32]{7}
                 ___ 32___       ___ 32___
               \/ 2 *\/ 7    I*\/ 2 *\/ 7 
    x16 = -7 + ----------- + -------------
                    2              2      
    x16=7+27322+2i2732x_{16} = -7 + \frac{\sqrt{2} \sqrt[32]{7}}{2} + \frac{\sqrt{2} i}{2} \sqrt[32]{7}
                 32___
    x17 = -7 - I*\/ 7 
    x17=7732ix_{17} = -7 - \sqrt[32]{7} i
                 32___
    x18 = -7 + I*\/ 7 
    x18=7+732ix_{18} = -7 + \sqrt[32]{7} i
               32___    /3*pi\     32___    /3*pi\
    x19 = -7 - \/ 7 *cos|----| + I*\/ 7 *sin|----|
                        \ 16 /              \ 16 /
    x19=7732cos(3π16)+732isin(3π16)x_{19} = -7 - \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
               32___    /3*pi\     32___    /3*pi\
    x20 = -7 + \/ 7 *cos|----| - I*\/ 7 *sin|----|
                        \ 16 /              \ 16 /
    x20=7+732cos(3π16)732isin(3π16)x_{20} = -7 + \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
                          ___________                ___________
                         /       ___                /       ___ 
               32___    /  1   \/ 2       32___    /  1   \/ 2  
    x21 = -7 - \/ 7 *  /   - - -----  + I*\/ 7 *  /   - + ----- 
                     \/    2     4              \/    2     4   
    x21=773224+12+732i24+12x_{21} = -7 - \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
                          ___________                ___________
                         /       ___                /       ___ 
               32___    /  1   \/ 2       32___    /  1   \/ 2  
    x22 = -7 + \/ 7 *  /   - - -----  - I*\/ 7 *  /   - + ----- 
                     \/    2     4              \/    2     4   
    x22=7+73224+12732i24+12x_{22} = -7 + \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
               32___    /pi\     32___    /pi\
    x23 = -7 - \/ 7 *cos|--| + I*\/ 7 *sin|--|
                        \16/              \16/
    x23=7732cos(π16)+732isin(π16)x_{23} = -7 - \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
               32___    /pi\     32___    /pi\
    x24 = -7 + \/ 7 *cos|--| - I*\/ 7 *sin|--|
                        \16/              \16/
    x24=7+732cos(π16)732isin(π16)x_{24} = -7 + \sqrt[32]{7} \cos{\left (\frac{\pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{\pi}{16} \right )}
                          ___________                ___________
                         /       ___                /       ___ 
               32___    /  1   \/ 2       32___    /  1   \/ 2  
    x25 = -7 - \/ 7 *  /   - + -----  + I*\/ 7 *  /   - - ----- 
                     \/    2     4              \/    2     4   
    x25=773224+12+732i24+12x_{25} = -7 - \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
                          ___________                ___________
                         /       ___                /       ___ 
               32___    /  1   \/ 2       32___    /  1   \/ 2  
    x26 = -7 + \/ 7 *  /   - + -----  - I*\/ 7 *  /   - - ----- 
                     \/    2     4              \/    2     4   
    x26=7+73224+12732i24+12x_{26} = -7 + \sqrt[32]{7} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}}
                 ___ 32___       ___ 32___
               \/ 2 *\/ 7    I*\/ 2 *\/ 7 
    x27 = -7 - ----------- + -------------
                    2              2      
    x27=727322+2i2732x_{27} = -7 - \frac{\sqrt{2} \sqrt[32]{7}}{2} + \frac{\sqrt{2} i}{2} \sqrt[32]{7}
                 ___ 32___       ___ 32___
               \/ 2 *\/ 7    I*\/ 2 *\/ 7 
    x28 = -7 + ----------- - -------------
                    2              2      
    x28=7+273222i2732x_{28} = -7 + \frac{\sqrt{2} \sqrt[32]{7}}{2} - \frac{\sqrt{2} i}{2} \sqrt[32]{7}
               32___    /3*pi\     32___    /3*pi\
    x29 = -7 + \/ 7 *cos|----| + I*\/ 7 *sin|----|
                        \ 16 /              \ 16 /
    x29=7+732cos(3π16)+732isin(3π16)x_{29} = -7 + \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} + \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
               32___    /3*pi\     32___    /3*pi\
    x30 = -7 - \/ 7 *cos|----| - I*\/ 7 *sin|----|
                        \ 16 /              \ 16 /
    x30=7732cos(3π16)732isin(3π16)x_{30} = -7 - \sqrt[32]{7} \cos{\left (\frac{3 \pi}{16} \right )} - \sqrt[32]{7} i \sin{\left (\frac{3 \pi}{16} \right )}
                          ___________                ___________
                         /       ___                /       ___ 
               32___    /  1   \/ 2       32___    /  1   \/ 2  
    x31 = -7 - \/ 7 *  /   - - -----  - I*\/ 7 *  /   - + ----- 
                     \/    2     4              \/    2     4   
    x31=773224+12732i24+12x_{31} = -7 - \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
                          ___________                ___________
                         /       ___                /       ___ 
               32___    /  1   \/ 2       32___    /  1   \/ 2  
    x32 = -7 + \/ 7 *  /   - - -----  + I*\/ 7 *  /   - + ----- 
                     \/    2     4              \/    2     4   
    x32=7+73224+12+732i24+12x_{32} = -7 + \sqrt[32]{7} \sqrt{- \frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[32]{7} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}
    Численный ответ [src]
    x1 = -6.40959737151 + 0.88359997609*i
    x2 = -7.0 + 1.06269665543*i
    x3 = -7.0 - 1.06269665543*i
    x4 = -6.59332359634 + 0.981803689224*i
    x5 = -6.79267816729 + 1.04227723718*i
    x6 = -8.04227723718 - 0.207321832714*i
    x7 = -7.98180368922 + 0.406676403665*i
    x8 = -6.11640002391 + 0.590402628489*i
    x9 = -5.93730334457000
    x10 = -8.06269665543000
    x11 = -7.40667640366 + 0.981803689224*i
    x12 = -5.95772276282 - 0.207321832714*i
    x13 = -6.59332359634 - 0.981803689224*i
    x14 = -7.20732183271 - 1.04227723718*i
    x15 = -6.01819631078 - 0.406676403665*i
    x16 = -7.88359997609 - 0.590402628489*i
    x17 = -6.01819631078 + 0.406676403665*i
    x18 = -7.59040262849 + 0.88359997609*i
    x19 = -7.59040262849 - 0.88359997609*i
    x20 = -6.2485599886 - 0.751440011402*i
    x21 = -7.20732183271 + 1.04227723718*i
    x22 = -7.98180368922 - 0.406676403665*i
    x23 = -6.79267816729 - 1.04227723718*i
    x24 = -6.2485599886 + 0.751440011402*i
    x25 = -8.04227723718 + 0.207321832714*i
    x26 = -6.11640002391 - 0.590402628489*i
    x27 = -7.40667640366 - 0.981803689224*i
    x28 = -6.40959737151 - 0.88359997609*i
    x29 = -5.95772276282 + 0.207321832714*i
    x30 = -7.7514400114 - 0.751440011402*i
    x31 = -7.7514400114 + 0.751440011402*i
    x32 = -7.88359997609 + 0.590402628489*i
    График
    (x+7)^32=7 (уравнение) /media/krcore-image-pods/6027/0ec9/5d46/21d4/im.png