Решите уравнение (x+7)•(x-1)=0 ((х плюс 7)•(х минус 1) равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

(x+7)•(x-1)=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (x+7)•(x-1)=0

    Решение

    Вы ввели [src]
    (x + 7)*(x - 1) = 0
    $$\left(x + 7\right) \left(x - 1\right) = 0$$
    Подробное решение
    Раскроем выражение в уравнении
    $$\left(x + 7\right) \left(x - 1\right) + 0 = 0$$
    Получаем квадратное уравнение
    $$x^{2} + 6 x - 7 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 6$$
    $$c = -7$$
    , то
    D = b^2 - 4 * a * c = 

    (6)^2 - 4 * (1) * (-7) = 64

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 1$$
    Упростить
    $$x_{2} = -7$$
    Упростить
    График
    Быстрый ответ [src]
    x1 = -7
    $$x_{1} = -7$$
    x2 = 1
    $$x_{2} = 1$$
    Сумма и произведение корней [src]
    сумма
    0 - 7 + 1
    $$\left(-7 + 0\right) + 1$$
    =
    -6
    $$-6$$
    произведение
    1*-7*1
    $$1 \left(-7\right) 1$$
    =
    -7
    $$-7$$
    Численный ответ [src]
    x1 = -7.0
    x2 = 1.0
    График
    (x+7)•(x-1)=0 (уравнение) /media/krcore-image-pods/hash/equation/8/f7/a624c034887bb72c9544d99285be7.png