Решите уравнение x + 6 = x^2 (х плюс 6 равно х в квадрате) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

x + 6 = x^2 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x + 6 = x^2

    Решение

    Вы ввели [src]
             2
    x + 6 = x 
    $$x + 6 = x^{2}$$
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    $$x + 6 = x^{2}$$
    в
    $$- x^{2} + \left(x + 6\right) = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = -1$$
    $$b = 1$$
    $$c = 6$$
    , то
    D = b^2 - 4 * a * c = 

    (1)^2 - 4 * (-1) * (6) = 25

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = -2$$
    $$x_{2} = 3$$
    График
    Быстрый ответ [src]
    x1 = -2
    $$x_{1} = -2$$
    x2 = 3
    $$x_{2} = 3$$
    Численный ответ [src]
    x1 = 3.0
    x2 = -2.0
    График
    x + 6 = x^2 (уравнение) /media/krcore-image-pods/hash/equation/0/3f/d8769c180668d8c1de78763c22a5b.png