2
/ 2*(-3 + re(y))*im(y) 2*(6 - re(y))*im(y) \ 2*im (y) 2*(-3 + re(y))*(6 - re(y))
x1 = I*|- ---------------------- - ----------------------| - ---------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (-3 + re(y)) + im (y) (-3 + re(y)) + im (y)/ (-3 + re(y)) + im (y) (-3 + re(y)) + im (y)
$$x_{1} = \frac{2 \left(6 - \operatorname{re}{\left(y\right)}\right) \left(\operatorname{re}{\left(y\right)} - 3\right)}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + i \left(- \frac{2 \left(6 - \operatorname{re}{\left(y\right)}\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{2 \left(\operatorname{re}{\left(y\right)} - 3\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) - \frac{2 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
Сумма и произведение корней
[src] 2
/ 2*(-3 + re(y))*im(y) 2*(6 - re(y))*im(y) \ 2*im (y) 2*(-3 + re(y))*(6 - re(y))
I*|- ---------------------- - ----------------------| - ---------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (-3 + re(y)) + im (y) (-3 + re(y)) + im (y)/ (-3 + re(y)) + im (y) (-3 + re(y)) + im (y)
$$\frac{2 \left(6 - \operatorname{re}{\left(y\right)}\right) \left(\operatorname{re}{\left(y\right)} - 3\right)}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + i \left(- \frac{2 \left(6 - \operatorname{re}{\left(y\right)}\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{2 \left(\operatorname{re}{\left(y\right)} - 3\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) - \frac{2 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
2
/ 2*(-3 + re(y))*im(y) 2*(6 - re(y))*im(y) \ 2*im (y) 2*(-3 + re(y))*(6 - re(y))
I*|- ---------------------- - ----------------------| - ---------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (-3 + re(y)) + im (y) (-3 + re(y)) + im (y)/ (-3 + re(y)) + im (y) (-3 + re(y)) + im (y)
$$\frac{2 \left(6 - \operatorname{re}{\left(y\right)}\right) \left(\operatorname{re}{\left(y\right)} - 3\right)}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + i \left(- \frac{2 \left(6 - \operatorname{re}{\left(y\right)}\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{2 \left(\operatorname{re}{\left(y\right)} - 3\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) - \frac{2 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
2
/ 2*(-3 + re(y))*im(y) 2*(6 - re(y))*im(y) \ 2*im (y) 2*(-3 + re(y))*(6 - re(y))
I*|- ---------------------- - ----------------------| - ---------------------- + --------------------------
| 2 2 2 2 | 2 2 2 2
\ (-3 + re(y)) + im (y) (-3 + re(y)) + im (y)/ (-3 + re(y)) + im (y) (-3 + re(y)) + im (y)
$$\frac{2 \left(6 - \operatorname{re}{\left(y\right)}\right) \left(\operatorname{re}{\left(y\right)} - 3\right)}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} + i \left(- \frac{2 \left(6 - \operatorname{re}{\left(y\right)}\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}} - \frac{2 \left(\operatorname{re}{\left(y\right)} - 3\right) \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}\right) - \frac{2 \left(\operatorname{im}{\left(y\right)}\right)^{2}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
/ 2 \
-\2*im (y) + 2*(-6 + re(y))*(-3 + re(y)) + 6*I*im(y)/
------------------------------------------------------
2 2
(-3 + re(y)) + im (y)
$$- \frac{2 \left(\operatorname{re}{\left(y\right)} - 6\right) \left(\operatorname{re}{\left(y\right)} - 3\right) + 2 \left(\operatorname{im}{\left(y\right)}\right)^{2} + 6 i \operatorname{im}{\left(y\right)}}{\left(\operatorname{re}{\left(y\right)} - 3\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$x y - 3 x + 2 y = 12$$
Коэффициент при x равен
$$y - 3$$
тогда возможные случаи для y :
$$y < 3$$
$$y = 3$$
Рассмотри все случаи подробнее:
При
$$y < 3$$
уравнение будет
$$- x - 8 = 0$$
его решение
$$x = -8$$
При
$$y = 3$$
уравнение будет
$$-6 = 0$$
его решение
нет решений