xyy=1-x^2 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: xyy=1-x^2
Решение
Подробное решение
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
$$y x y = 1 - x^{2}$$
в
$$y x y + \left(x^{2} - 1\right) = 0$$
Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
$$a = 1$$
$$b = y^{2}$$
$$c = -1$$
, то
D = b^2 - 4 * a * c =
(y^2)^2 - 4 * (1) * (-1) = 4 + y^4
Уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
$$x_{1} = - \frac{y^{2}}{2} + \frac{\sqrt{y^{4} + 4}}{2}$$
$$x_{2} = - \frac{y^{2}}{2} - \frac{\sqrt{y^{4} + 4}}{2}$$ / _________________________________________________________________________________ \ _________________________________________________________________________________
| / 2 2 / / 3 3 4 4 2 2 \\| / 2 2 / / 3 3 4 4 2 2 \\
| 4 / / 3 3 \ / 4 4 2 2 \ |atan2\- 4*im (y)*re(y) + 4*re (y)*im(y), 4 + im (y) + re (y) - 6*im (y)*re (y)/|| 4 / / 3 3 \ / 4 4 2 2 \ |atan2\- 4*im (y)*re(y) + 4*re (y)*im(y), 4 + im (y) + re (y) - 6*im (y)*re (y)/|
2 2 | \/ \- 4*im (y)*re(y) + 4*re (y)*im(y)/ + \4 + im (y) + re (y) - 6*im (y)*re (y)/ *sin|-------------------------------------------------------------------------------|| \/ \- 4*im (y)*re(y) + 4*re (y)*im(y)/ + \4 + im (y) + re (y) - 6*im (y)*re (y)/ *cos|-------------------------------------------------------------------------------|
im (y) re (y) | \ 2 /| \ 2 /
x1 = ------ - ------ + I*|-im(y)*re(y) - --------------------------------------------------------------------------------------------------------------------------------------------------------------------------| - --------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2 2 \ 2 / 2
$$x_{1} = i \left(- \frac{\sqrt[4]{\left(4 \left(\operatorname{re}{\left(y\right)}\right)^{3} \operatorname{im}{\left(y\right)} - 4 \operatorname{re}{\left(y\right)} \left(\operatorname{im}{\left(y\right)}\right)^{3}\right)^{2} + \left(\left(\operatorname{re}{\left(y\right)}\right)^{4} - 6 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{4} + 4\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(4 \left(\operatorname{re}{\left(y\right)}\right)^{3} \operatorname{im}{\left(y\right)} - 4 \operatorname{re}{\left(y\right)} \left(\operatorname{im}{\left(y\right)}\right)^{3},\left(\operatorname{re}{\left(y\right)}\right)^{4} - 6 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{4} + 4 \right)}}{2} \right)}}{2} - \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)}\right) - \frac{\sqrt[4]{\left(4 \left(\operatorname{re}{\left(y\right)}\right)^{3} \operatorname{im}{\left(y\right)} - 4 \operatorname{re}{\left(y\right)} \left(\operatorname{im}{\left(y\right)}\right)^{3}\right)^{2} + \left(\left(\operatorname{re}{\left(y\right)}\right)^{4} - 6 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{4} + 4\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(4 \left(\operatorname{re}{\left(y\right)}\right)^{3} \operatorname{im}{\left(y\right)} - 4 \operatorname{re}{\left(y\right)} \left(\operatorname{im}{\left(y\right)}\right)^{3},\left(\operatorname{re}{\left(y\right)}\right)^{4} - 6 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{4} + 4 \right)}}{2} \right)}}{2} - \frac{\left(\operatorname{re}{\left(y\right)}\right)^{2}}{2} + \frac{\left(\operatorname{im}{\left(y\right)}\right)^{2}}{2}$$
/ _________________________________________________________________________________ \ _________________________________________________________________________________
| / 2 2 / / 3 3 4 4 2 2 \\ | / 2 2 / / 3 3 4 4 2 2 \\
|4 / / 3 3 \ / 4 4 2 2 \ |atan2\- 4*im (y)*re(y) + 4*re (y)*im(y), 4 + im (y) + re (y) - 6*im (y)*re (y)/| | 4 / / 3 3 \ / 4 4 2 2 \ |atan2\- 4*im (y)*re(y) + 4*re (y)*im(y), 4 + im (y) + re (y) - 6*im (y)*re (y)/|
2 2 |\/ \- 4*im (y)*re(y) + 4*re (y)*im(y)/ + \4 + im (y) + re (y) - 6*im (y)*re (y)/ *sin|-------------------------------------------------------------------------------| | \/ \- 4*im (y)*re(y) + 4*re (y)*im(y)/ + \4 + im (y) + re (y) - 6*im (y)*re (y)/ *cos|-------------------------------------------------------------------------------|
im (y) re (y) | \ 2 / | \ 2 /
x2 = ------ - ------ + I*|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- - im(y)*re(y)| + --------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2 2 \ 2 / 2
$$x_{2} = i \left(\frac{\sqrt[4]{\left(4 \left(\operatorname{re}{\left(y\right)}\right)^{3} \operatorname{im}{\left(y\right)} - 4 \operatorname{re}{\left(y\right)} \left(\operatorname{im}{\left(y\right)}\right)^{3}\right)^{2} + \left(\left(\operatorname{re}{\left(y\right)}\right)^{4} - 6 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{4} + 4\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(4 \left(\operatorname{re}{\left(y\right)}\right)^{3} \operatorname{im}{\left(y\right)} - 4 \operatorname{re}{\left(y\right)} \left(\operatorname{im}{\left(y\right)}\right)^{3},\left(\operatorname{re}{\left(y\right)}\right)^{4} - 6 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{4} + 4 \right)}}{2} \right)}}{2} - \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)}\right) + \frac{\sqrt[4]{\left(4 \left(\operatorname{re}{\left(y\right)}\right)^{3} \operatorname{im}{\left(y\right)} - 4 \operatorname{re}{\left(y\right)} \left(\operatorname{im}{\left(y\right)}\right)^{3}\right)^{2} + \left(\left(\operatorname{re}{\left(y\right)}\right)^{4} - 6 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{4} + 4\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(4 \left(\operatorname{re}{\left(y\right)}\right)^{3} \operatorname{im}{\left(y\right)} - 4 \operatorname{re}{\left(y\right)} \left(\operatorname{im}{\left(y\right)}\right)^{3},\left(\operatorname{re}{\left(y\right)}\right)^{4} - 6 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{4} + 4 \right)}}{2} \right)}}{2} - \frac{\left(\operatorname{re}{\left(y\right)}\right)^{2}}{2} + \frac{\left(\operatorname{im}{\left(y\right)}\right)^{2}}{2}$$