________________________ ________________________
8 / 2 2 /atan2(im(y), -2 + re(y))\ 8 / 2 2 /atan2(im(y), -2 + re(y))\
x1 = \/ (-2 + re(y)) + im (y) *sin|------------------------| - I*\/ (-2 + re(y)) + im (y) *cos|------------------------|
\ 4 / \ 4 /
$$x_{1} = \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \sin{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )} - i \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \cos{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )}$$
________________________ ________________________
8 / 2 2 /atan2(im(y), -2 + re(y))\ 8 / 2 2 /atan2(im(y), -2 + re(y))\
x2 = - \/ (-2 + re(y)) + im (y) *sin|------------------------| + I*\/ (-2 + re(y)) + im (y) *cos|------------------------|
\ 4 / \ 4 /
$$x_{2} = - \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \sin{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )} + i \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \cos{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )}$$
________________________ ________________________
8 / 2 2 /atan2(im(y), -2 + re(y))\ 8 / 2 2 /atan2(im(y), -2 + re(y))\
x3 = - \/ (-2 + re(y)) + im (y) *cos|------------------------| - I*\/ (-2 + re(y)) + im (y) *sin|------------------------|
\ 4 / \ 4 /
$$x_{3} = - i \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \sin{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )} - \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \cos{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )}$$
________________________ ________________________
8 / 2 2 /atan2(im(y), -2 + re(y))\ 8 / 2 2 /atan2(im(y), -2 + re(y))\
x4 = \/ (-2 + re(y)) + im (y) *cos|------------------------| + I*\/ (-2 + re(y)) + im (y) *sin|------------------------|
\ 4 / \ 4 /
$$x_{4} = i \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \sin{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )} + \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \cos{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )}$$