Решите уравнение x^4-y=-2 (х в степени 4 минус у равно минус 2) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

x^4-y=-2 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^4-y=-2

    Решение

    Вы ввели [src]
     4         
    x  - y = -2
    $$x^{4} - y = -2$$
    Быстрый ответ [src]
            ________________________                                      ________________________                              
         8 /             2     2        /atan2(im(y), -2 + re(y))\     8 /             2     2        /atan2(im(y), -2 + re(y))\
    x1 = \/  (-2 + re(y))  + im (y) *sin|------------------------| - I*\/  (-2 + re(y))  + im (y) *cos|------------------------|
                                        \           4            /                                    \           4            /
    $$x_{1} = \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \sin{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )} - i \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \cos{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )}$$
              ________________________                                      ________________________                              
           8 /             2     2        /atan2(im(y), -2 + re(y))\     8 /             2     2        /atan2(im(y), -2 + re(y))\
    x2 = - \/  (-2 + re(y))  + im (y) *sin|------------------------| + I*\/  (-2 + re(y))  + im (y) *cos|------------------------|
                                          \           4            /                                    \           4            /
    $$x_{2} = - \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \sin{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )} + i \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \cos{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )}$$
              ________________________                                      ________________________                              
           8 /             2     2        /atan2(im(y), -2 + re(y))\     8 /             2     2        /atan2(im(y), -2 + re(y))\
    x3 = - \/  (-2 + re(y))  + im (y) *cos|------------------------| - I*\/  (-2 + re(y))  + im (y) *sin|------------------------|
                                          \           4            /                                    \           4            /
    $$x_{3} = - i \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \sin{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )} - \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \cos{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )}$$
            ________________________                                      ________________________                              
         8 /             2     2        /atan2(im(y), -2 + re(y))\     8 /             2     2        /atan2(im(y), -2 + re(y))\
    x4 = \/  (-2 + re(y))  + im (y) *cos|------------------------| + I*\/  (-2 + re(y))  + im (y) *sin|------------------------|
                                        \           4            /                                    \           4            /
    $$x_{4} = i \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \sin{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )} + \sqrt[8]{\left(\Re{y} - 2\right)^{2} + \left(\Im{y}\right)^{2}} \cos{\left (\frac{1}{4} \operatorname{atan_{2}}{\left (\Im{y},\Re{y} - 2 \right )} \right )}$$