Дано уравнение x4+16=0 Т.к. степень в ур-нии равна = 4 и свободный член = -16 < 0, зн. действительных решений у соотв. ур-ния не существует
Остальные 4 корня(ей) являются комплексными. сделаем замену: z=x тогда ур-ние будет таким: z4=−16 Любое комплексное число можно представить так: z=reip подставляем в уравнение r4e4ip=−16 где r=2 - модуль комплексного числа Подставляем r: e4ip=−1 Используя формулу Эйлера, найдём корни для p isin(4p)+cos(4p)=−1 значит cos(4p)=−1 и sin(4p)=0 тогда p=2πN+4π где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для z Значит, решением будет для z: z1=−2−2i z2=−2+2i z3=2−2i z4=2+2i делаем обратную замену z=x x=z