Дано уравнение x4=625 Т.к. степень в ур-нии равна = 4 - содержит чётное число 4 в числителе, то ур-ние будет иметь два действительных корня. Извлечём корень 4-й степени из обеих частей ур-ния: Получим: 4(1x+0)4=5 4(1x+0)4=−5 или x=5 x=−5 Получим ответ: x = 5 Получим ответ: x = -5 или x1=−5 x2=5
Остальные 2 корня(ей) являются комплексными. сделаем замену: z=x тогда ур-ние будет таким: z4=625 Любое комплексное число можно представить так: z=reip подставляем в уравнение r4e4ip=625 где r=5 - модуль комплексного числа Подставляем r: e4ip=1 Используя формулу Эйлера, найдём корни для p isin(4p)+cos(4p)=1 значит cos(4p)=1 и sin(4p)=0 тогда p=2πN где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для z Значит, решением будет для z: z1=−5 z2=5 z3=−5i z4=5i делаем обратную замену z=x x=z