x^9=-2 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: x^9=-2
Решение
Подробное решение
Дано уравнениеx 9 = − 2 x^{9} = -2 x 9 = − 2 Т.к. степень в ур-нии равна = 9 - не содержит чётного числа в числителе, то ур-ние будет иметь один действительный корень. Извлечём корень 9-й степени из обеих частей ур-ния: Получим:x 9 9 = − 2 9 \sqrt[9]{x^{9}} = \sqrt[9]{-2} 9 x 9 = 9 − 2 илиx = − 2 9 x = \sqrt[9]{-2} x = 9 − 2 Раскрываем скобочки в правой части ур-нияx = -2^1/9 Получим ответ: x = (-2)^(1/9) Остальные 8 корня(ей) являются комплексными. сделаем замену:z = x z = x z = x тогда ур-ние будет таким:z 9 = − 2 z^{9} = -2 z 9 = − 2 Любое комплексное число можно представить так:z = r e i p z = r e^{i p} z = r e i p подставляем в уравнениеr 9 e 9 i p = − 2 r^{9} e^{9 i p} = -2 r 9 e 9 i p = − 2 гдеr = 2 9 r = \sqrt[9]{2} r = 9 2 - модуль комплексного числа Подставляем r:e 9 i p = − 1 e^{9 i p} = -1 e 9 i p = − 1 Используя формулу Эйлера, найдём корни для pi sin ( 9 p ) + cos ( 9 p ) = − 1 i \sin{\left (9 p \right )} + \cos{\left (9 p \right )} = -1 i sin ( 9 p ) + cos ( 9 p ) = − 1 значитcos ( 9 p ) = − 1 \cos{\left (9 p \right )} = -1 cos ( 9 p ) = − 1 иsin ( 9 p ) = 0 \sin{\left (9 p \right )} = 0 sin ( 9 p ) = 0 тогдаp = 2 π 9 N + π 9 p = \frac{2 \pi}{9} N + \frac{\pi}{9} p = 9 2 π N + 9 π где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для z Значит, решением будет для z:z 1 = 2 9 cos ( π 9 ) + 2 9 i sin ( π 9 ) z_{1} = \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} z 1 = 9 2 cos ( 9 π ) + 9 2 i sin ( 9 π ) z 2 = − 2 9 cos 2 ( π 9 ) − 2 9 sin 2 ( π 9 ) z_{2} = - \sqrt[9]{2} \cos^{2}{\left (\frac{\pi}{9} \right )} - \sqrt[9]{2} \sin^{2}{\left (\frac{\pi}{9} \right )} z 2 = − 9 2 cos 2 ( 9 π ) − 9 2 sin 2 ( 9 π ) z 3 = − 2 9 cos 2 ( π 9 ) + 2 9 sin 2 ( π 9 ) − 2 2 9 i sin ( π 9 ) cos ( π 9 ) z_{3} = - \sqrt[9]{2} \cos^{2}{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} \sin^{2}{\left (\frac{\pi}{9} \right )} - 2 \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} z 3 = − 9 2 cos 2 ( 9 π ) + 9 2 sin 2 ( 9 π ) − 2 9 2 i sin ( 9 π ) cos ( 9 π ) z 4 = − 2 9 2 cos ( π 9 ) − 2 9 3 2 sin ( π 9 ) − 2 9 i 2 sin ( π 9 ) + 2 9 i 2 3 cos ( π 9 ) z_{4} = - \frac{\sqrt[9]{2}}{2} \cos{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2} \sqrt{3}}{2} \sin{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2} i}{2} \sin{\left (\frac{\pi}{9} \right )} + \frac{\sqrt[9]{2} i}{2} \sqrt{3} \cos{\left (\frac{\pi}{9} \right )} z 4 = − 2 9 2 cos ( 9 π ) − 2 9 2 3 sin ( 9 π ) − 2 9 2 i sin ( 9 π ) + 2 9 2 i 3 cos ( 9 π ) z 5 = − 2 9 2 cos ( π 9 ) + 2 9 3 2 sin ( π 9 ) − 2 9 i 2 3 cos ( π 9 ) − 2 9 i 2 sin ( π 9 ) z_{5} = - \frac{\sqrt[9]{2}}{2} \cos{\left (\frac{\pi}{9} \right )} + \frac{\sqrt[9]{2} \sqrt{3}}{2} \sin{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2} i}{2} \sqrt{3} \cos{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2} i}{2} \sin{\left (\frac{\pi}{9} \right )} z 5 = − 2 9 2 cos ( 9 π ) + 2 9 2 3 sin ( 9 π ) − 2 9 2 i 3 cos ( 9 π ) − 2 9 2 i sin ( 9 π ) z 6 = − 2 9 sin ( π 9 ) sin ( 2 π 9 ) + 2 9 cos ( π 9 ) cos ( 2 π 9 ) + 2 9 i sin ( π 9 ) cos ( 2 π 9 ) + 2 9 i sin ( 2 π 9 ) cos ( π 9 ) z_{6} = - \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{2 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} z 6 = − 9 2 sin ( 9 π ) sin ( 9 2 π ) + 9 2 cos ( 9 π ) cos ( 9 2 π ) + 9 2 i sin ( 9 π ) cos ( 9 2 π ) + 9 2 i sin ( 9 2 π ) cos ( 9 π ) z 7 = 2 9 sin ( π 9 ) sin ( 2 π 9 ) + 2 9 cos ( π 9 ) cos ( 2 π 9 ) − 2 9 i sin ( 2 π 9 ) cos ( π 9 ) + 2 9 i sin ( π 9 ) cos ( 2 π 9 ) z_{7} = \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} - \sqrt[9]{2} i \sin{\left (\frac{2 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} z 7 = 9 2 sin ( 9 π ) sin ( 9 2 π ) + 9 2 cos ( 9 π ) cos ( 9 2 π ) − 9 2 i sin ( 9 2 π ) cos ( 9 π ) + 9 2 i sin ( 9 π ) cos ( 9 2 π ) z 8 = − 2 9 sin ( π 9 ) sin ( 4 π 9 ) + 2 9 cos ( π 9 ) cos ( 4 π 9 ) + 2 9 i sin ( π 9 ) cos ( 4 π 9 ) + 2 9 i sin ( 4 π 9 ) cos ( π 9 ) z_{8} = - \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{4 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} z 8 = − 9 2 sin ( 9 π ) sin ( 9 4 π ) + 9 2 cos ( 9 π ) cos ( 9 4 π ) + 9 2 i sin ( 9 π ) cos ( 9 4 π ) + 9 2 i sin ( 9 4 π ) cos ( 9 π ) z 9 = 2 9 cos ( π 9 ) cos ( 4 π 9 ) + 2 9 sin ( π 9 ) sin ( 4 π 9 ) − 2 9 i sin ( 4 π 9 ) cos ( π 9 ) + 2 9 i sin ( π 9 ) cos ( 4 π 9 ) z_{9} = \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{4 \pi}{9} \right )} - \sqrt[9]{2} i \sin{\left (\frac{4 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} z 9 = 9 2 cos ( 9 π ) cos ( 9 4 π ) + 9 2 sin ( 9 π ) sin ( 9 4 π ) − 9 2 i sin ( 9 4 π ) cos ( 9 π ) + 9 2 i sin ( 9 π ) cos ( 9 4 π ) делаем обратную заменуz = x z = x z = x x = z x = z x = z Тогда, окончательный ответ:x 1 = 2 9 cos ( π 9 ) + 2 9 i sin ( π 9 ) x_{1} = \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} x 1 = 9 2 cos ( 9 π ) + 9 2 i sin ( 9 π ) x 2 = − 2 9 cos 2 ( π 9 ) − 2 9 sin 2 ( π 9 ) x_{2} = - \sqrt[9]{2} \cos^{2}{\left (\frac{\pi}{9} \right )} - \sqrt[9]{2} \sin^{2}{\left (\frac{\pi}{9} \right )} x 2 = − 9 2 cos 2 ( 9 π ) − 9 2 sin 2 ( 9 π ) x 3 = − 2 9 cos 2 ( π 9 ) + 2 9 sin 2 ( π 9 ) − 2 2 9 i sin ( π 9 ) cos ( π 9 ) x_{3} = - \sqrt[9]{2} \cos^{2}{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} \sin^{2}{\left (\frac{\pi}{9} \right )} - 2 \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} x 3 = − 9 2 cos 2 ( 9 π ) + 9 2 sin 2 ( 9 π ) − 2 9 2 i sin ( 9 π ) cos ( 9 π ) x 4 = − 2 9 2 cos ( π 9 ) − 2 9 3 2 sin ( π 9 ) − 2 9 i 2 sin ( π 9 ) + 2 9 i 2 3 cos ( π 9 ) x_{4} = - \frac{\sqrt[9]{2}}{2} \cos{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2} \sqrt{3}}{2} \sin{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2} i}{2} \sin{\left (\frac{\pi}{9} \right )} + \frac{\sqrt[9]{2} i}{2} \sqrt{3} \cos{\left (\frac{\pi}{9} \right )} x 4 = − 2 9 2 cos ( 9 π ) − 2 9 2 3 sin ( 9 π ) − 2 9 2 i sin ( 9 π ) + 2 9 2 i 3 cos ( 9 π ) x 5 = − 2 9 2 cos ( π 9 ) + 2 9 3 2 sin ( π 9 ) − 2 9 i 2 3 cos ( π 9 ) − 2 9 i 2 sin ( π 9 ) x_{5} = - \frac{\sqrt[9]{2}}{2} \cos{\left (\frac{\pi}{9} \right )} + \frac{\sqrt[9]{2} \sqrt{3}}{2} \sin{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2} i}{2} \sqrt{3} \cos{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2} i}{2} \sin{\left (\frac{\pi}{9} \right )} x 5 = − 2 9 2 cos ( 9 π ) + 2 9 2 3 sin ( 9 π ) − 2 9 2 i 3 cos ( 9 π ) − 2 9 2 i sin ( 9 π ) x 6 = − 2 9 sin ( π 9 ) sin ( 2 π 9 ) + 2 9 cos ( π 9 ) cos ( 2 π 9 ) + 2 9 i sin ( π 9 ) cos ( 2 π 9 ) + 2 9 i sin ( 2 π 9 ) cos ( π 9 ) x_{6} = - \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{2 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} x 6 = − 9 2 sin ( 9 π ) sin ( 9 2 π ) + 9 2 cos ( 9 π ) cos ( 9 2 π ) + 9 2 i sin ( 9 π ) cos ( 9 2 π ) + 9 2 i sin ( 9 2 π ) cos ( 9 π ) x 7 = 2 9 sin ( π 9 ) sin ( 2 π 9 ) + 2 9 cos ( π 9 ) cos ( 2 π 9 ) − 2 9 i sin ( 2 π 9 ) cos ( π 9 ) + 2 9 i sin ( π 9 ) cos ( 2 π 9 ) x_{7} = \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} - \sqrt[9]{2} i \sin{\left (\frac{2 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} x 7 = 9 2 sin ( 9 π ) sin ( 9 2 π ) + 9 2 cos ( 9 π ) cos ( 9 2 π ) − 9 2 i sin ( 9 2 π ) cos ( 9 π ) + 9 2 i sin ( 9 π ) cos ( 9 2 π ) x 8 = − 2 9 sin ( π 9 ) sin ( 4 π 9 ) + 2 9 cos ( π 9 ) cos ( 4 π 9 ) + 2 9 i sin ( π 9 ) cos ( 4 π 9 ) + 2 9 i sin ( 4 π 9 ) cos ( π 9 ) x_{8} = - \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{4 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} x 8 = − 9 2 sin ( 9 π ) sin ( 9 4 π ) + 9 2 cos ( 9 π ) cos ( 9 4 π ) + 9 2 i sin ( 9 π ) cos ( 9 4 π ) + 9 2 i sin ( 9 4 π ) cos ( 9 π ) x 9 = 2 9 cos ( π 9 ) cos ( 4 π 9 ) + 2 9 sin ( π 9 ) sin ( 4 π 9 ) − 2 9 i sin ( 4 π 9 ) cos ( π 9 ) + 2 9 i sin ( π 9 ) cos ( 4 π 9 ) x_{9} = \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{4 \pi}{9} \right )} - \sqrt[9]{2} i \sin{\left (\frac{4 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} x 9 = 9 2 cos ( 9 π ) cos ( 9 4 π ) + 9 2 sin ( 9 π ) sin ( 9 4 π ) − 9 2 i sin ( 9 4 π ) cos ( 9 π ) + 9 2 i sin ( 9 π ) cos ( 9 4 π )
График
-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 -2500000000 2500000000
9 ___ 2/pi\ 9 ___ 2/pi\
x1 = - \/ 2 *cos |--| - \/ 2 *sin |--|
\9 / \9 / x 1 = − 2 9 cos 2 ( π 9 ) − 2 9 sin 2 ( π 9 ) x_{1} = - \sqrt[9]{2} \cos^{2}{\left (\frac{\pi}{9} \right )} - \sqrt[9]{2} \sin^{2}{\left (\frac{\pi}{9} \right )} x 1 = − 9 2 cos 2 ( 9 π ) − 9 2 sin 2 ( 9 π ) / 9 ___ /pi\ 9 ___ ___ /pi\\ 9 ___ /pi\ 9 ___ ___ /pi\
| \/ 2 *sin|--| \/ 2 *\/ 3 *cos|--|| \/ 2 *cos|--| \/ 2 *\/ 3 *sin|--|
| \9 / \9 /| \9 / \9 /
x2 = I*|- ------------- + -------------------| - ------------- - -------------------
\ 2 2 / 2 2 x 2 = − 2 9 2 cos ( π 9 ) − 2 9 3 2 sin ( π 9 ) + i ( − 2 9 2 sin ( π 9 ) + 2 9 3 2 cos ( π 9 ) ) x_{2} = - \frac{\sqrt[9]{2}}{2} \cos{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2} \sqrt{3}}{2} \sin{\left (\frac{\pi}{9} \right )} + i \left(- \frac{\sqrt[9]{2}}{2} \sin{\left (\frac{\pi}{9} \right )} + \frac{\sqrt[9]{2} \sqrt{3}}{2} \cos{\left (\frac{\pi}{9} \right )}\right) x 2 = − 2 9 2 cos ( 9 π ) − 2 9 2 3 sin ( 9 π ) + i ( − 2 9 2 sin ( 9 π ) + 2 9 2 3 cos ( 9 π ) ) / 9 ___ /pi\ 9 ___ ___ /pi\\ 9 ___ /pi\ 9 ___ ___ /pi\
| \/ 2 *sin|--| \/ 2 *\/ 3 *cos|--|| \/ 2 *cos|--| \/ 2 *\/ 3 *sin|--|
| \9 / \9 /| \9 / \9 /
x3 = I*|- ------------- - -------------------| - ------------- + -------------------
\ 2 2 / 2 2 x 3 = − 2 9 2 cos ( π 9 ) + 2 9 3 2 sin ( π 9 ) + i ( − 2 9 3 2 cos ( π 9 ) − 2 9 2 sin ( π 9 ) ) x_{3} = - \frac{\sqrt[9]{2}}{2} \cos{\left (\frac{\pi}{9} \right )} + \frac{\sqrt[9]{2} \sqrt{3}}{2} \sin{\left (\frac{\pi}{9} \right )} + i \left(- \frac{\sqrt[9]{2} \sqrt{3}}{2} \cos{\left (\frac{\pi}{9} \right )} - \frac{\sqrt[9]{2}}{2} \sin{\left (\frac{\pi}{9} \right )}\right) x 3 = − 2 9 2 cos ( 9 π ) + 2 9 2 3 sin ( 9 π ) + i ( − 2 9 2 3 cos ( 9 π ) − 2 9 2 sin ( 9 π ) ) /9 ___ /pi\ /2*pi\ 9 ___ /2*pi\ /pi\\ 9 ___ /pi\ /2*pi\ 9 ___ /pi\ /2*pi\
x4 = I*|\/ 2 *cos|--|*sin|----| + \/ 2 *cos|----|*sin|--|| + \/ 2 *cos|--|*cos|----| - \/ 2 *sin|--|*sin|----|
\ \9 / \ 9 / \ 9 / \9 // \9 / \ 9 / \9 / \ 9 / x 4 = − 2 9 sin ( π 9 ) sin ( 2 π 9 ) + 2 9 cos ( π 9 ) cos ( 2 π 9 ) + i ( 2 9 sin ( π 9 ) cos ( 2 π 9 ) + 2 9 sin ( 2 π 9 ) cos ( π 9 ) ) x_{4} = - \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} + i \left(\sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} \sin{\left (\frac{2 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )}\right) x 4 = − 9 2 sin ( 9 π ) sin ( 9 2 π ) + 9 2 cos ( 9 π ) cos ( 9 2 π ) + i ( 9 2 sin ( 9 π ) cos ( 9 2 π ) + 9 2 sin ( 9 2 π ) cos ( 9 π ) ) /9 ___ /2*pi\ /pi\ 9 ___ /pi\ /2*pi\\ 9 ___ /pi\ /2*pi\ 9 ___ /pi\ /2*pi\
x5 = I*|\/ 2 *cos|----|*sin|--| - \/ 2 *cos|--|*sin|----|| + \/ 2 *cos|--|*cos|----| + \/ 2 *sin|--|*sin|----|
\ \ 9 / \9 / \9 / \ 9 // \9 / \ 9 / \9 / \ 9 / x 5 = 2 9 sin ( π 9 ) sin ( 2 π 9 ) + 2 9 cos ( π 9 ) cos ( 2 π 9 ) + i ( − 2 9 sin ( 2 π 9 ) cos ( π 9 ) + 2 9 sin ( π 9 ) cos ( 2 π 9 ) ) x_{5} = \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{2 \pi}{9} \right )} + \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )} + i \left(- \sqrt[9]{2} \sin{\left (\frac{2 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{2 \pi}{9} \right )}\right) x 5 = 9 2 sin ( 9 π ) sin ( 9 2 π ) + 9 2 cos ( 9 π ) cos ( 9 2 π ) + i ( − 9 2 sin ( 9 2 π ) cos ( 9 π ) + 9 2 sin ( 9 π ) cos ( 9 2 π ) ) /9 ___ /pi\ /4*pi\ 9 ___ /4*pi\ /pi\\ 9 ___ /pi\ /4*pi\ 9 ___ /pi\ /4*pi\
x6 = I*|\/ 2 *cos|--|*sin|----| + \/ 2 *cos|----|*sin|--|| + \/ 2 *cos|--|*cos|----| - \/ 2 *sin|--|*sin|----|
\ \9 / \ 9 / \ 9 / \9 // \9 / \ 9 / \9 / \ 9 / x 6 = − 2 9 sin ( π 9 ) sin ( 4 π 9 ) + 2 9 cos ( π 9 ) cos ( 4 π 9 ) + i ( 2 9 sin ( π 9 ) cos ( 4 π 9 ) + 2 9 sin ( 4 π 9 ) cos ( π 9 ) ) x_{6} = - \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} + i \left(\sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} \sin{\left (\frac{4 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )}\right) x 6 = − 9 2 sin ( 9 π ) sin ( 9 4 π ) + 9 2 cos ( 9 π ) cos ( 9 4 π ) + i ( 9 2 sin ( 9 π ) cos ( 9 4 π ) + 9 2 sin ( 9 4 π ) cos ( 9 π ) ) /9 ___ /4*pi\ /pi\ 9 ___ /pi\ /4*pi\\ 9 ___ /pi\ /4*pi\ 9 ___ /pi\ /4*pi\
x7 = I*|\/ 2 *cos|----|*sin|--| - \/ 2 *cos|--|*sin|----|| + \/ 2 *cos|--|*cos|----| + \/ 2 *sin|--|*sin|----|
\ \ 9 / \9 / \9 / \ 9 // \9 / \ 9 / \9 / \ 9 / x 7 = 2 9 cos ( π 9 ) cos ( 4 π 9 ) + 2 9 sin ( π 9 ) sin ( 4 π 9 ) + i ( − 2 9 sin ( 4 π 9 ) cos ( π 9 ) + 2 9 sin ( π 9 ) cos ( 4 π 9 ) ) x_{7} = \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \sin{\left (\frac{4 \pi}{9} \right )} + i \left(- \sqrt[9]{2} \sin{\left (\frac{4 \pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{4 \pi}{9} \right )}\right) x 7 = 9 2 cos ( 9 π ) cos ( 9 4 π ) + 9 2 sin ( 9 π ) sin ( 9 4 π ) + i ( − 9 2 sin ( 9 4 π ) cos ( 9 π ) + 9 2 sin ( 9 π ) cos ( 9 4 π ) ) 9 ___ /pi\ 9 ___ /pi\
x8 = \/ 2 *cos|--| + I*\/ 2 *sin|--|
\9 / \9 / x 8 = 2 9 cos ( π 9 ) + 2 9 i sin ( π 9 ) x_{8} = \sqrt[9]{2} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} x 8 = 9 2 cos ( 9 π ) + 9 2 i sin ( 9 π ) 9 ___ 2/pi\ 9 ___ 2/pi\ 9 ___ /pi\ /pi\
x9 = \/ 2 *sin |--| - \/ 2 *cos |--| - 2*I*\/ 2 *cos|--|*sin|--|
\9 / \9 / \9 / \9 / x 9 = − 2 9 cos 2 ( π 9 ) + 2 9 sin 2 ( π 9 ) − 2 2 9 i sin ( π 9 ) cos ( π 9 ) x_{9} = - \sqrt[9]{2} \cos^{2}{\left (\frac{\pi}{9} \right )} + \sqrt[9]{2} \sin^{2}{\left (\frac{\pi}{9} \right )} - 2 \sqrt[9]{2} i \sin{\left (\frac{\pi}{9} \right )} \cos{\left (\frac{\pi}{9} \right )} x 9 = − 9 2 cos 2 ( 9 π ) + 9 2 sin 2 ( 9 π ) − 2 9 2 i sin ( 9 π ) cos ( 9 π ) x1 = -0.18755040543 + 1.06365120458*i x2 = 1.01492416665 - 0.369402186696*i x3 = -0.18755040543 - 1.06365120458*i x4 = 1.01492416665 + 0.369402186696*i x5 = -0.827373761215 + 0.694249017881*i x6 = 0.540029869446 - 0.935359171486*i x7 = -0.827373761215 - 0.694249017881*i x9 = 0.540029869446 + 0.935359171486*i