x^9=-1 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^9=-1

    Решение

    Вы ввели [src]
     9     
    x  = -1
    x9=1x^{9} = -1
    Подробное решение
    Дано уравнение
    x9=1x^{9} = -1
    Т.к. степень в ур-нии равна = 9 - не содержит чётного числа в числителе, то
    ур-ние будет иметь один действительный корень.
    Извлечём корень 9-й степени из обеих частей ур-ния:
    Получим:
    (1x+0)99=19\sqrt[9]{\left(1 x + 0\right)^{9}} = \sqrt[9]{-1}
    или
    x=19x = \sqrt[9]{-1}
    Раскрываем скобочки в правой части ур-ния
    x = -1^1/9

    Получим ответ: x = (-1)^(1/9)

    Остальные 8 корня(ей) являются комплексными.
    сделаем замену:
    z=xz = x
    тогда ур-ние будет таким:
    z9=1z^{9} = -1
    Любое комплексное число можно представить так:
    z=reipz = r e^{i p}
    подставляем в уравнение
    r9e9ip=1r^{9} e^{9 i p} = -1
    где
    r=1r = 1
    - модуль комплексного числа
    Подставляем r:
    e9ip=1e^{9 i p} = -1
    Используя формулу Эйлера, найдём корни для p
    isin(9p)+cos(9p)=1i \sin{\left(9 p \right)} + \cos{\left(9 p \right)} = -1
    значит
    cos(9p)=1\cos{\left(9 p \right)} = -1
    и
    sin(9p)=0\sin{\left(9 p \right)} = 0
    тогда
    p=2πN9+π9p = \frac{2 \pi N}{9} + \frac{\pi}{9}
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    z1=cos(π9)+isin(π9)z_{1} = \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)}
    z2=cos2(π9)sin2(π9)z_{2} = - \cos^{2}{\left(\frac{\pi}{9} \right)} - \sin^{2}{\left(\frac{\pi}{9} \right)}
    z3=cos2(π9)+sin2(π9)2isin(π9)cos(π9)z_{3} = - \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}
    z4=sin(π9)sin(2π9)+cos(π9)cos(2π9)+isin(π9)cos(2π9)+isin(2π9)cos(π9)z_{4} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}
    z5=sin(π9)sin(2π9)+cos(π9)cos(2π9)isin(2π9)cos(π9)+isin(π9)cos(2π9)z_{5} = \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} - i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}
    z6=sin(π9)sin(4π9)+cos(π9)cos(4π9)+isin(π9)cos(4π9)+isin(4π9)cos(π9)z_{6} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}
    z7=cos(π9)cos(4π9)+sin(π9)sin(4π9)isin(4π9)cos(π9)+isin(π9)cos(4π9)z_{7} = \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} - i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}
    z8=cos(π9)23sin(π9)2isin(π9)2+3icos(π9)2z_{8} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} - \frac{i \sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} i \cos{\left(\frac{\pi}{9} \right)}}{2}
    z9=cos(π9)2+3sin(π9)23icos(π9)2isin(π9)2z_{9} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} i \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{i \sin{\left(\frac{\pi}{9} \right)}}{2}
    делаем обратную замену
    z=xz = x
    x=zx = z

    Тогда, окончательный ответ:
    x1=cos(π9)+isin(π9)x_{1} = \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)}
    x2=cos2(π9)sin2(π9)x_{2} = - \cos^{2}{\left(\frac{\pi}{9} \right)} - \sin^{2}{\left(\frac{\pi}{9} \right)}
    x3=cos2(π9)+sin2(π9)2isin(π9)cos(π9)x_{3} = - \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}
    x4=sin(π9)sin(2π9)+cos(π9)cos(2π9)+isin(π9)cos(2π9)+isin(2π9)cos(π9)x_{4} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}
    x5=sin(π9)sin(2π9)+cos(π9)cos(2π9)isin(2π9)cos(π9)+isin(π9)cos(2π9)x_{5} = \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} - i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}
    x6=sin(π9)sin(4π9)+cos(π9)cos(4π9)+isin(π9)cos(4π9)+isin(4π9)cos(π9)x_{6} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}
    x7=cos(π9)cos(4π9)+sin(π9)sin(4π9)isin(4π9)cos(π9)+isin(π9)cos(4π9)x_{7} = \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} - i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}
    x8=cos(π9)23sin(π9)2isin(π9)2+3icos(π9)2x_{8} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} - \frac{i \sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} i \cos{\left(\frac{\pi}{9} \right)}}{2}
    x9=cos(π9)2+3sin(π9)23icos(π9)2isin(π9)2x_{9} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} i \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{i \sin{\left(\frac{\pi}{9} \right)}}{2}
    График
    -15.0-12.5-10.0-7.5-5.0-2.50.02.55.07.510.012.5-25000000002500000000
    Быстрый ответ [src]
              2/pi\      2/pi\
    x1 = - cos |--| - sin |--|
               \9 /       \9 /
    x1=cos2(π9)sin2(π9)x_{1} = - \cos^{2}{\left(\frac{\pi}{9} \right)} - \sin^{2}{\left(\frac{\pi}{9} \right)}
           /   /pi\    /2*pi\      /2*pi\    /pi\\      /pi\    /2*pi\      /pi\    /2*pi\
    x2 = I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----|
           \   \9 /    \ 9  /      \ 9  /    \9 //      \9 /    \ 9  /      \9 /    \ 9  /
    x2=sin(π9)sin(2π9)+cos(π9)cos(2π9)+i(sin(π9)cos(2π9)+sin(2π9)cos(π9))x_{2} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)
           /   /2*pi\    /pi\      /pi\    /2*pi\\      /pi\    /2*pi\      /pi\    /2*pi\
    x3 = I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----|
           \   \ 9  /    \9 /      \9 /    \ 9  //      \9 /    \ 9  /      \9 /    \ 9  /
    x3=sin(π9)sin(2π9)+cos(π9)cos(2π9)+i(sin(2π9)cos(π9)+sin(π9)cos(2π9))x_{3} = \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(- \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}\right)
           /   /pi\    /4*pi\      /4*pi\    /pi\\      /pi\    /4*pi\      /pi\    /4*pi\
    x4 = I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----|
           \   \9 /    \ 9  /      \ 9  /    \9 //      \9 /    \ 9  /      \9 /    \ 9  /
    x4=sin(π9)sin(4π9)+cos(π9)cos(4π9)+i(sin(π9)cos(4π9)+sin(4π9)cos(π9))x_{4} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)
           /   /4*pi\    /pi\      /pi\    /4*pi\\      /pi\    /4*pi\      /pi\    /4*pi\
    x5 = I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----|
           \   \ 9  /    \9 /      \9 /    \ 9  //      \9 /    \ 9  /      \9 /    \ 9  /
    x5=cos(π9)cos(4π9)+sin(π9)sin(4π9)+i(sin(4π9)cos(π9)+sin(π9)cos(4π9))x_{5} = \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + i \left(- \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}\right)
              /pi\     /     /pi\     ___    /pi\\     ___    /pi\
           cos|--|     |  sin|--|   \/ 3 *cos|--||   \/ 3 *sin|--|
              \9 /     |     \9 /            \9 /|            \9 /
    x6 = - ------- + I*|- ------- + -------------| - -------------
              2        \     2            2      /         2      
    x6=cos(π9)23sin(π9)2+i(sin(π9)2+3cos(π9)2)x_{6} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} + i \left(- \frac{\sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2}\right)
              /pi\     /     /pi\     ___    /pi\\     ___    /pi\
           cos|--|     |  sin|--|   \/ 3 *cos|--||   \/ 3 *sin|--|
              \9 /     |     \9 /            \9 /|            \9 /
    x7 = - ------- + I*|- ------- - -------------| + -------------
              2        \     2            2      /         2      
    x7=cos(π9)2+3sin(π9)2+i(3cos(π9)2sin(π9)2)x_{7} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} + i \left(- \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sin{\left(\frac{\pi}{9} \right)}}{2}\right)
              /pi\      /pi\
    x8 = I*sin|--| + cos|--|
              \9 /      \9 /
    x8=cos(π9)+isin(π9)x_{8} = \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)}
            2/pi\      2/pi\          /pi\    /pi\
    x9 = sin |--| - cos |--| - 2*I*cos|--|*sin|--|
             \9 /       \9 /          \9 /    \9 /
    x9=cos2(π9)+sin2(π9)2isin(π9)cos(π9)x_{9} = - \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}
    Сумма и произведение корней [src]
    сумма
                                                                                                                                                                                                                                                                                                                                                                                     /pi\     /     /pi\     ___    /pi\\     ___    /pi\        /pi\     /     /pi\     ___    /pi\\     ___    /pi\                                                                  
                                                                                                                                                                                                                                                                                                                                                                                  cos|--|     |  sin|--|   \/ 3 *cos|--||   \/ 3 *sin|--|     cos|--|     |  sin|--|   \/ 3 *cos|--||   \/ 3 *sin|--|                                                                  
             2/pi\      2/pi\     /   /pi\    /2*pi\      /2*pi\    /pi\\      /pi\    /2*pi\      /pi\    /2*pi\     /   /2*pi\    /pi\      /pi\    /2*pi\\      /pi\    /2*pi\      /pi\    /2*pi\     /   /pi\    /4*pi\      /4*pi\    /pi\\      /pi\    /4*pi\      /pi\    /4*pi\     /   /4*pi\    /pi\      /pi\    /4*pi\\      /pi\    /4*pi\      /pi\    /4*pi\        \9 /     |     \9 /            \9 /|            \9 /        \9 /     |     \9 /            \9 /|            \9 /        /pi\      /pi\      2/pi\      2/pi\          /pi\    /pi\
    0 + - cos |--| - sin |--| + I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----| + I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----| + I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----| + I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----| + - ------- + I*|- ------- + -------------| - ------------- + - ------- + I*|- ------- - -------------| + ------------- + I*sin|--| + cos|--| + sin |--| - cos |--| - 2*I*cos|--|*sin|--|
              \9 /       \9 /     \   \9 /    \ 9  /      \ 9  /    \9 //      \9 /    \ 9  /      \9 /    \ 9  /     \   \ 9  /    \9 /      \9 /    \ 9  //      \9 /    \ 9  /      \9 /    \ 9  /     \   \9 /    \ 9  /      \ 9  /    \9 //      \9 /    \ 9  /      \9 /    \ 9  /     \   \ 9  /    \9 /      \9 /    \ 9  //      \9 /    \ 9  /      \9 /    \ 9  /        2        \     2            2      /         2              2        \     2            2      /         2              \9 /      \9 /       \9 /       \9 /          \9 /    \9 /
    (cos2(π9)+sin2(π9)2isin(π9)cos(π9))(2cos(π9)cos(2π9)2cos(π9)cos(4π9)+sin2(π9)+cos2(π9)i(sin(π9)cos(4π9)+sin(4π9)cos(π9))i(sin(π9)cos(2π9)+sin(2π9)cos(π9))i(sin(π9)2+3cos(π9)2)isin(π9)i(sin(2π9)cos(π9)+sin(π9)cos(2π9))i(sin(4π9)cos(π9)+sin(π9)cos(4π9))i(3cos(π9)2sin(π9)2))\left(- \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) - \left(- 2 \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} - 2 \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} + \cos^{2}{\left(\frac{\pi}{9} \right)} - i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) - i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) - i \left(- \frac{\sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2}\right) - i \sin{\left(\frac{\pi}{9} \right)} - i \left(- \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}\right) - i \left(- \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}\right) - i \left(- \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sin{\left(\frac{\pi}{9} \right)}}{2}\right)\right)
    =
                     /     /pi\     ___    /pi\\     /     /pi\     ___    /pi\\                                                                                                                                                                                                                                                              
                     |  sin|--|   \/ 3 *cos|--||     |  sin|--|   \/ 3 *cos|--||                                                                                                                                                                                                                                                              
           2/pi\     |     \9 /            \9 /|     |     \9 /            \9 /|     /   /pi\    /2*pi\      /2*pi\    /pi\\     /   /pi\    /4*pi\      /4*pi\    /pi\\     /   /2*pi\    /pi\      /pi\    /2*pi\\     /   /4*pi\    /pi\      /pi\    /4*pi\\        /pi\        /pi\    /2*pi\        /pi\    /4*pi\          /pi\    /pi\
    - 2*cos |--| + I*|- ------- + -------------| + I*|- ------- - -------------| + I*|cos|--|*sin|----| + cos|----|*sin|--|| + I*|cos|--|*sin|----| + cos|----|*sin|--|| + I*|cos|----|*sin|--| - cos|--|*sin|----|| + I*|cos|----|*sin|--| - cos|--|*sin|----|| + I*sin|--| + 2*cos|--|*cos|----| + 2*cos|--|*cos|----| - 2*I*cos|--|*sin|--|
            \9 /     \     2            2      /     \     2            2      /     \   \9 /    \ 9  /      \ 9  /    \9 //     \   \9 /    \ 9  /      \ 9  /    \9 //     \   \ 9  /    \9 /      \9 /    \ 9  //     \   \ 9  /    \9 /      \9 /    \ 9  //        \9 /        \9 /    \ 9  /        \9 /    \ 9  /          \9 /    \9 /
    2cos2(π9)+2cos(π9)cos(4π9)+2cos(π9)cos(2π9)+i(3cos(π9)2sin(π9)2)+i(sin(4π9)cos(π9)+sin(π9)cos(4π9))2isin(π9)cos(π9)+i(sin(2π9)cos(π9)+sin(π9)cos(2π9))+isin(π9)+i(sin(π9)2+3cos(π9)2)+i(sin(π9)cos(2π9)+sin(2π9)cos(π9))+i(sin(π9)cos(4π9)+sin(4π9)cos(π9))- 2 \cos^{2}{\left(\frac{\pi}{9} \right)} + 2 \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + 2 \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(- \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sin{\left(\frac{\pi}{9} \right)}}{2}\right) + i \left(- \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}\right) - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \left(- \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}\right) + i \sin{\left(\frac{\pi}{9} \right)} + i \left(- \frac{\sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2}\right) + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)
    произведение
                                                                                                                                                                                                                                                                                                                                                                              /     /pi\     /     /pi\     ___    /pi\\     ___    /pi\\ /     /pi\     /     /pi\     ___    /pi\\     ___    /pi\\                                                                  
                                                                                                                                                                                                                                                                                                                                                                              |  cos|--|     |  sin|--|   \/ 3 *cos|--||   \/ 3 *sin|--|| |  cos|--|     |  sin|--|   \/ 3 *cos|--||   \/ 3 *sin|--||                                                                  
      /     2/pi\      2/pi\\ /  /   /pi\    /2*pi\      /2*pi\    /pi\\      /pi\    /2*pi\      /pi\    /2*pi\\ /  /   /2*pi\    /pi\      /pi\    /2*pi\\      /pi\    /2*pi\      /pi\    /2*pi\\ /  /   /pi\    /4*pi\      /4*pi\    /pi\\      /pi\    /4*pi\      /pi\    /4*pi\\ /  /   /4*pi\    /pi\      /pi\    /4*pi\\      /pi\    /4*pi\      /pi\    /4*pi\\ |     \9 /     |     \9 /            \9 /|            \9 /| |     \9 /     |     \9 /            \9 /|            \9 /| /     /pi\      /pi\\ /   2/pi\      2/pi\          /pi\    /pi\\
    1*|- cos |--| - sin |--||*|I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----||*|I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----||*|I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----||*|I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----||*|- ------- + I*|- ------- + -------------| - -------------|*|- ------- + I*|- ------- - -------------| + -------------|*|I*sin|--| + cos|--||*|sin |--| - cos |--| - 2*I*cos|--|*sin|--||
      \      \9 /       \9 // \  \   \9 /    \ 9  /      \ 9  /    \9 //      \9 /    \ 9  /      \9 /    \ 9  // \  \   \ 9  /    \9 /      \9 /    \ 9  //      \9 /    \ 9  /      \9 /    \ 9  // \  \   \9 /    \ 9  /      \ 9  /    \9 //      \9 /    \ 9  /      \9 /    \ 9  // \  \   \ 9  /    \9 /      \9 /    \ 9  //      \9 /    \ 9  /      \9 /    \ 9  // \     2        \     2            2      /         2      / \     2        \     2            2      /         2      / \     \9 /      \9 // \    \9 /       \9 /          \9 /    \9 //
    1(cos2(π9)sin2(π9))(sin(π9)sin(2π9)+cos(π9)cos(2π9)+i(sin(π9)cos(2π9)+sin(2π9)cos(π9)))(sin(π9)sin(2π9)+cos(π9)cos(2π9)+i(sin(2π9)cos(π9)+sin(π9)cos(2π9)))(sin(π9)sin(4π9)+cos(π9)cos(4π9)+i(sin(π9)cos(4π9)+sin(4π9)cos(π9)))(cos(π9)cos(4π9)+sin(π9)sin(4π9)+i(sin(4π9)cos(π9)+sin(π9)cos(4π9)))(cos(π9)23sin(π9)2+i(sin(π9)2+3cos(π9)2))(cos(π9)2+3sin(π9)2+i(3cos(π9)2sin(π9)2))(cos(π9)+isin(π9))(cos2(π9)+sin2(π9)2isin(π9)cos(π9))1 \left(- \cos^{2}{\left(\frac{\pi}{9} \right)} - \sin^{2}{\left(\frac{\pi}{9} \right)}\right) \left(- \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)\right) \left(\sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(- \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}\right)\right) \left(- \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)\right) \left(\cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + i \left(- \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}\right)\right) \left(- \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} + i \left(- \frac{\sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2}\right)\right) \left(- \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} + i \left(- \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sin{\left(\frac{\pi}{9} \right)}}{2}\right)\right) \left(\cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)}\right) \left(- \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)
    =
                                                                    /              /    ___        /pi\        /pi\    /pi\\\                                                    2*pi*I
                                                                    |            I*|- \/ 3  + 2*cos|--| + 4*cos|--|*cos|--|||                                                    ------
    /        ___\ /      /    ___        /pi\        /pi\    /pi\\\ |     /pi\     \               \18/        \9 /    \18//| /     /pi\      /pi\\ /       /2*pi\      /5*pi\\    9   
    \1 + I*\/ 3 /*|2 + I*|- \/ 3  + 2*cos|--| - 4*cos|--|*cos|--|||*|- sin|--| + -------------------------------------------|*|I*cos|--| + sin|--||*|- I*sin|----| + sin|----||*e      
                  \      \               \18/        \9 /    \18/// \     \18/                        4                     / \     \18/      \18// \       \ 9  /      \ 18 //        
    -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                             8                                                                                         
    (1+3i)(2+i(4cos(π18)cos(π9)3+2cos(π18)))(sin(π18)+i(3+2cos(π18)+4cos(π18)cos(π9))4)(sin(π18)+icos(π18))(sin(5π18)isin(2π9))e2iπ98\frac{\left(1 + \sqrt{3} i\right) \left(2 + i \left(- 4 \cos{\left(\frac{\pi}{18} \right)} \cos{\left(\frac{\pi}{9} \right)} - \sqrt{3} + 2 \cos{\left(\frac{\pi}{18} \right)}\right)\right) \left(- \sin{\left(\frac{\pi}{18} \right)} + \frac{i \left(- \sqrt{3} + 2 \cos{\left(\frac{\pi}{18} \right)} + 4 \cos{\left(\frac{\pi}{18} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)}{4}\right) \left(\sin{\left(\frac{\pi}{18} \right)} + i \cos{\left(\frac{\pi}{18} \right)}\right) \left(\sin{\left(\frac{5 \pi}{18} \right)} - i \sin{\left(\frac{2 \pi}{9} \right)}\right) e^{\frac{2 i \pi}{9}}}{8}
    Численный ответ [src]
    x1 = -0.17364817766693 - 0.984807753012208*i
    x2 = 0.939692620785908 - 0.342020143325669*i
    x3 = 0.5 - 0.866025403784439*i
    x4 = -0.766044443118978 - 0.642787609686539*i
    x5 = -1.0
    x6 = 0.5 + 0.866025403784439*i
    x7 = -0.766044443118978 + 0.642787609686539*i
    x8 = -0.17364817766693 + 0.984807753012208*i
    x9 = 0.939692620785908 + 0.342020143325669*i
    График
    x^9=-1 (уравнение) /media/krcore-image-pods/hash/equation/b/dc/8d02f928ca0438f134b8684f53d03.png