x^9=-1 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: x^9=-1
Решение
Подробное решение
Дано уравнениеx 9 = − 1 x^{9} = -1 x 9 = − 1 Т.к. степень в ур-нии равна = 9 - не содержит чётного числа в числителе, то ур-ние будет иметь один действительный корень. Извлечём корень 9-й степени из обеих частей ур-ния: Получим:( 1 x + 0 ) 9 9 = − 1 9 \sqrt[9]{\left(1 x + 0\right)^{9}} = \sqrt[9]{-1} 9 ( 1 x + 0 ) 9 = 9 − 1 илиx = − 1 9 x = \sqrt[9]{-1} x = 9 − 1 Раскрываем скобочки в правой части ур-нияx = -1^1/9 Получим ответ: x = (-1)^(1/9) Остальные 8 корня(ей) являются комплексными. сделаем замену:z = x z = x z = x тогда ур-ние будет таким:z 9 = − 1 z^{9} = -1 z 9 = − 1 Любое комплексное число можно представить так:z = r e i p z = r e^{i p} z = r e i p подставляем в уравнениеr 9 e 9 i p = − 1 r^{9} e^{9 i p} = -1 r 9 e 9 i p = − 1 гдеr = 1 r = 1 r = 1 - модуль комплексного числа Подставляем r:e 9 i p = − 1 e^{9 i p} = -1 e 9 i p = − 1 Используя формулу Эйлера, найдём корни для pi sin ( 9 p ) + cos ( 9 p ) = − 1 i \sin{\left(9 p \right)} + \cos{\left(9 p \right)} = -1 i sin ( 9 p ) + cos ( 9 p ) = − 1 значитcos ( 9 p ) = − 1 \cos{\left(9 p \right)} = -1 cos ( 9 p ) = − 1 иsin ( 9 p ) = 0 \sin{\left(9 p \right)} = 0 sin ( 9 p ) = 0 тогдаp = 2 π N 9 + π 9 p = \frac{2 \pi N}{9} + \frac{\pi}{9} p = 9 2 π N + 9 π где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для z Значит, решением будет для z:z 1 = cos ( π 9 ) + i sin ( π 9 ) z_{1} = \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} z 1 = cos ( 9 π ) + i sin ( 9 π ) z 2 = − cos 2 ( π 9 ) − sin 2 ( π 9 ) z_{2} = - \cos^{2}{\left(\frac{\pi}{9} \right)} - \sin^{2}{\left(\frac{\pi}{9} \right)} z 2 = − cos 2 ( 9 π ) − sin 2 ( 9 π ) z 3 = − cos 2 ( π 9 ) + sin 2 ( π 9 ) − 2 i sin ( π 9 ) cos ( π 9 ) z_{3} = - \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} z 3 = − cos 2 ( 9 π ) + sin 2 ( 9 π ) − 2 i sin ( 9 π ) cos ( 9 π ) z 4 = − sin ( π 9 ) sin ( 2 π 9 ) + cos ( π 9 ) cos ( 2 π 9 ) + i sin ( π 9 ) cos ( 2 π 9 ) + i sin ( 2 π 9 ) cos ( π 9 ) z_{4} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} z 4 = − sin ( 9 π ) sin ( 9 2 π ) + cos ( 9 π ) cos ( 9 2 π ) + i sin ( 9 π ) cos ( 9 2 π ) + i sin ( 9 2 π ) cos ( 9 π ) z 5 = sin ( π 9 ) sin ( 2 π 9 ) + cos ( π 9 ) cos ( 2 π 9 ) − i sin ( 2 π 9 ) cos ( π 9 ) + i sin ( π 9 ) cos ( 2 π 9 ) z_{5} = \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} - i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} z 5 = sin ( 9 π ) sin ( 9 2 π ) + cos ( 9 π ) cos ( 9 2 π ) − i sin ( 9 2 π ) cos ( 9 π ) + i sin ( 9 π ) cos ( 9 2 π ) z 6 = − sin ( π 9 ) sin ( 4 π 9 ) + cos ( π 9 ) cos ( 4 π 9 ) + i sin ( π 9 ) cos ( 4 π 9 ) + i sin ( 4 π 9 ) cos ( π 9 ) z_{6} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} z 6 = − sin ( 9 π ) sin ( 9 4 π ) + cos ( 9 π ) cos ( 9 4 π ) + i sin ( 9 π ) cos ( 9 4 π ) + i sin ( 9 4 π ) cos ( 9 π ) z 7 = cos ( π 9 ) cos ( 4 π 9 ) + sin ( π 9 ) sin ( 4 π 9 ) − i sin ( 4 π 9 ) cos ( π 9 ) + i sin ( π 9 ) cos ( 4 π 9 ) z_{7} = \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} - i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} z 7 = cos ( 9 π ) cos ( 9 4 π ) + sin ( 9 π ) sin ( 9 4 π ) − i sin ( 9 4 π ) cos ( 9 π ) + i sin ( 9 π ) cos ( 9 4 π ) z 8 = − cos ( π 9 ) 2 − 3 sin ( π 9 ) 2 − i sin ( π 9 ) 2 + 3 i cos ( π 9 ) 2 z_{8} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} - \frac{i \sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} i \cos{\left(\frac{\pi}{9} \right)}}{2} z 8 = − 2 cos ( 9 π ) − 2 3 sin ( 9 π ) − 2 i sin ( 9 π ) + 2 3 i cos ( 9 π ) z 9 = − cos ( π 9 ) 2 + 3 sin ( π 9 ) 2 − 3 i cos ( π 9 ) 2 − i sin ( π 9 ) 2 z_{9} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} i \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{i \sin{\left(\frac{\pi}{9} \right)}}{2} z 9 = − 2 cos ( 9 π ) + 2 3 sin ( 9 π ) − 2 3 i cos ( 9 π ) − 2 i sin ( 9 π ) делаем обратную заменуz = x z = x z = x x = z x = z x = z Тогда, окончательный ответ:x 1 = cos ( π 9 ) + i sin ( π 9 ) x_{1} = \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} x 1 = cos ( 9 π ) + i sin ( 9 π ) x 2 = − cos 2 ( π 9 ) − sin 2 ( π 9 ) x_{2} = - \cos^{2}{\left(\frac{\pi}{9} \right)} - \sin^{2}{\left(\frac{\pi}{9} \right)} x 2 = − cos 2 ( 9 π ) − sin 2 ( 9 π ) x 3 = − cos 2 ( π 9 ) + sin 2 ( π 9 ) − 2 i sin ( π 9 ) cos ( π 9 ) x_{3} = - \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} x 3 = − cos 2 ( 9 π ) + sin 2 ( 9 π ) − 2 i sin ( 9 π ) cos ( 9 π ) x 4 = − sin ( π 9 ) sin ( 2 π 9 ) + cos ( π 9 ) cos ( 2 π 9 ) + i sin ( π 9 ) cos ( 2 π 9 ) + i sin ( 2 π 9 ) cos ( π 9 ) x_{4} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} x 4 = − sin ( 9 π ) sin ( 9 2 π ) + cos ( 9 π ) cos ( 9 2 π ) + i sin ( 9 π ) cos ( 9 2 π ) + i sin ( 9 2 π ) cos ( 9 π ) x 5 = sin ( π 9 ) sin ( 2 π 9 ) + cos ( π 9 ) cos ( 2 π 9 ) − i sin ( 2 π 9 ) cos ( π 9 ) + i sin ( π 9 ) cos ( 2 π 9 ) x_{5} = \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} - i \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} x 5 = sin ( 9 π ) sin ( 9 2 π ) + cos ( 9 π ) cos ( 9 2 π ) − i sin ( 9 2 π ) cos ( 9 π ) + i sin ( 9 π ) cos ( 9 2 π ) x 6 = − sin ( π 9 ) sin ( 4 π 9 ) + cos ( π 9 ) cos ( 4 π 9 ) + i sin ( π 9 ) cos ( 4 π 9 ) + i sin ( 4 π 9 ) cos ( π 9 ) x_{6} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} x 6 = − sin ( 9 π ) sin ( 9 4 π ) + cos ( 9 π ) cos ( 9 4 π ) + i sin ( 9 π ) cos ( 9 4 π ) + i sin ( 9 4 π ) cos ( 9 π ) x 7 = cos ( π 9 ) cos ( 4 π 9 ) + sin ( π 9 ) sin ( 4 π 9 ) − i sin ( 4 π 9 ) cos ( π 9 ) + i sin ( π 9 ) cos ( 4 π 9 ) x_{7} = \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} - i \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} x 7 = cos ( 9 π ) cos ( 9 4 π ) + sin ( 9 π ) sin ( 9 4 π ) − i sin ( 9 4 π ) cos ( 9 π ) + i sin ( 9 π ) cos ( 9 4 π ) x 8 = − cos ( π 9 ) 2 − 3 sin ( π 9 ) 2 − i sin ( π 9 ) 2 + 3 i cos ( π 9 ) 2 x_{8} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} - \frac{i \sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} i \cos{\left(\frac{\pi}{9} \right)}}{2} x 8 = − 2 cos ( 9 π ) − 2 3 sin ( 9 π ) − 2 i sin ( 9 π ) + 2 3 i cos ( 9 π ) x 9 = − cos ( π 9 ) 2 + 3 sin ( π 9 ) 2 − 3 i cos ( π 9 ) 2 − i sin ( π 9 ) 2 x_{9} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} i \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{i \sin{\left(\frac{\pi}{9} \right)}}{2} x 9 = − 2 cos ( 9 π ) + 2 3 sin ( 9 π ) − 2 3 i cos ( 9 π ) − 2 i sin ( 9 π )
График
-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 -2500000000 2500000000
2/pi\ 2/pi\
x1 = - cos |--| - sin |--|
\9 / \9 / x 1 = − cos 2 ( π 9 ) − sin 2 ( π 9 ) x_{1} = - \cos^{2}{\left(\frac{\pi}{9} \right)} - \sin^{2}{\left(\frac{\pi}{9} \right)} x 1 = − cos 2 ( 9 π ) − sin 2 ( 9 π ) / /pi\ /2*pi\ /2*pi\ /pi\\ /pi\ /2*pi\ /pi\ /2*pi\
x2 = I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----|
\ \9 / \ 9 / \ 9 / \9 // \9 / \ 9 / \9 / \ 9 / x 2 = − sin ( π 9 ) sin ( 2 π 9 ) + cos ( π 9 ) cos ( 2 π 9 ) + i ( sin ( π 9 ) cos ( 2 π 9 ) + sin ( 2 π 9 ) cos ( π 9 ) ) x_{2} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) x 2 = − sin ( 9 π ) sin ( 9 2 π ) + cos ( 9 π ) cos ( 9 2 π ) + i ( sin ( 9 π ) cos ( 9 2 π ) + sin ( 9 2 π ) cos ( 9 π ) ) / /2*pi\ /pi\ /pi\ /2*pi\\ /pi\ /2*pi\ /pi\ /2*pi\
x3 = I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----|
\ \ 9 / \9 / \9 / \ 9 // \9 / \ 9 / \9 / \ 9 / x 3 = sin ( π 9 ) sin ( 2 π 9 ) + cos ( π 9 ) cos ( 2 π 9 ) + i ( − sin ( 2 π 9 ) cos ( π 9 ) + sin ( π 9 ) cos ( 2 π 9 ) ) x_{3} = \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(- \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}\right) x 3 = sin ( 9 π ) sin ( 9 2 π ) + cos ( 9 π ) cos ( 9 2 π ) + i ( − sin ( 9 2 π ) cos ( 9 π ) + sin ( 9 π ) cos ( 9 2 π ) ) / /pi\ /4*pi\ /4*pi\ /pi\\ /pi\ /4*pi\ /pi\ /4*pi\
x4 = I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----|
\ \9 / \ 9 / \ 9 / \9 // \9 / \ 9 / \9 / \ 9 / x 4 = − sin ( π 9 ) sin ( 4 π 9 ) + cos ( π 9 ) cos ( 4 π 9 ) + i ( sin ( π 9 ) cos ( 4 π 9 ) + sin ( 4 π 9 ) cos ( π 9 ) ) x_{4} = - \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) x 4 = − sin ( 9 π ) sin ( 9 4 π ) + cos ( 9 π ) cos ( 9 4 π ) + i ( sin ( 9 π ) cos ( 9 4 π ) + sin ( 9 4 π ) cos ( 9 π ) ) / /4*pi\ /pi\ /pi\ /4*pi\\ /pi\ /4*pi\ /pi\ /4*pi\
x5 = I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----|
\ \ 9 / \9 / \9 / \ 9 // \9 / \ 9 / \9 / \ 9 / x 5 = cos ( π 9 ) cos ( 4 π 9 ) + sin ( π 9 ) sin ( 4 π 9 ) + i ( − sin ( 4 π 9 ) cos ( π 9 ) + sin ( π 9 ) cos ( 4 π 9 ) ) x_{5} = \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + i \left(- \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}\right) x 5 = cos ( 9 π ) cos ( 9 4 π ) + sin ( 9 π ) sin ( 9 4 π ) + i ( − sin ( 9 4 π ) cos ( 9 π ) + sin ( 9 π ) cos ( 9 4 π ) ) /pi\ / /pi\ ___ /pi\\ ___ /pi\
cos|--| | sin|--| \/ 3 *cos|--|| \/ 3 *sin|--|
\9 / | \9 / \9 /| \9 /
x6 = - ------- + I*|- ------- + -------------| - -------------
2 \ 2 2 / 2 x 6 = − cos ( π 9 ) 2 − 3 sin ( π 9 ) 2 + i ( − sin ( π 9 ) 2 + 3 cos ( π 9 ) 2 ) x_{6} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} + i \left(- \frac{\sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2}\right) x 6 = − 2 cos ( 9 π ) − 2 3 sin ( 9 π ) + i ( − 2 sin ( 9 π ) + 2 3 cos ( 9 π ) ) /pi\ / /pi\ ___ /pi\\ ___ /pi\
cos|--| | sin|--| \/ 3 *cos|--|| \/ 3 *sin|--|
\9 / | \9 / \9 /| \9 /
x7 = - ------- + I*|- ------- - -------------| + -------------
2 \ 2 2 / 2 x 7 = − cos ( π 9 ) 2 + 3 sin ( π 9 ) 2 + i ( − 3 cos ( π 9 ) 2 − sin ( π 9 ) 2 ) x_{7} = - \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} + i \left(- \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sin{\left(\frac{\pi}{9} \right)}}{2}\right) x 7 = − 2 cos ( 9 π ) + 2 3 sin ( 9 π ) + i ( − 2 3 cos ( 9 π ) − 2 sin ( 9 π ) ) /pi\ /pi\
x8 = I*sin|--| + cos|--|
\9 / \9 / x 8 = cos ( π 9 ) + i sin ( π 9 ) x_{8} = \cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)} x 8 = cos ( 9 π ) + i sin ( 9 π ) 2/pi\ 2/pi\ /pi\ /pi\
x9 = sin |--| - cos |--| - 2*I*cos|--|*sin|--|
\9 / \9 / \9 / \9 / x 9 = − cos 2 ( π 9 ) + sin 2 ( π 9 ) − 2 i sin ( π 9 ) cos ( π 9 ) x_{9} = - \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} x 9 = − cos 2 ( 9 π ) + sin 2 ( 9 π ) − 2 i sin ( 9 π ) cos ( 9 π )
Сумма и произведение корней
[src] /pi\ / /pi\ ___ /pi\\ ___ /pi\ /pi\ / /pi\ ___ /pi\\ ___ /pi\
cos|--| | sin|--| \/ 3 *cos|--|| \/ 3 *sin|--| cos|--| | sin|--| \/ 3 *cos|--|| \/ 3 *sin|--|
2/pi\ 2/pi\ / /pi\ /2*pi\ /2*pi\ /pi\\ /pi\ /2*pi\ /pi\ /2*pi\ / /2*pi\ /pi\ /pi\ /2*pi\\ /pi\ /2*pi\ /pi\ /2*pi\ / /pi\ /4*pi\ /4*pi\ /pi\\ /pi\ /4*pi\ /pi\ /4*pi\ / /4*pi\ /pi\ /pi\ /4*pi\\ /pi\ /4*pi\ /pi\ /4*pi\ \9 / | \9 / \9 /| \9 / \9 / | \9 / \9 /| \9 / /pi\ /pi\ 2/pi\ 2/pi\ /pi\ /pi\
0 + - cos |--| - sin |--| + I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----| + I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----| + I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----| + I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----| + - ------- + I*|- ------- + -------------| - ------------- + - ------- + I*|- ------- - -------------| + ------------- + I*sin|--| + cos|--| + sin |--| - cos |--| - 2*I*cos|--|*sin|--|
\9 / \9 / \ \9 / \ 9 / \ 9 / \9 // \9 / \ 9 / \9 / \ 9 / \ \ 9 / \9 / \9 / \ 9 // \9 / \ 9 / \9 / \ 9 / \ \9 / \ 9 / \ 9 / \9 // \9 / \ 9 / \9 / \ 9 / \ \ 9 / \9 / \9 / \ 9 // \9 / \ 9 / \9 / \ 9 / 2 \ 2 2 / 2 2 \ 2 2 / 2 \9 / \9 / \9 / \9 / \9 / \9 / ( − cos 2 ( π 9 ) + sin 2 ( π 9 ) − 2 i sin ( π 9 ) cos ( π 9 ) ) − ( − 2 cos ( π 9 ) cos ( 2 π 9 ) − 2 cos ( π 9 ) cos ( 4 π 9 ) + sin 2 ( π 9 ) + cos 2 ( π 9 ) − i ( sin ( π 9 ) cos ( 4 π 9 ) + sin ( 4 π 9 ) cos ( π 9 ) ) − i ( sin ( π 9 ) cos ( 2 π 9 ) + sin ( 2 π 9 ) cos ( π 9 ) ) − i ( − sin ( π 9 ) 2 + 3 cos ( π 9 ) 2 ) − i sin ( π 9 ) − i ( − sin ( 2 π 9 ) cos ( π 9 ) + sin ( π 9 ) cos ( 2 π 9 ) ) − i ( − sin ( 4 π 9 ) cos ( π 9 ) + sin ( π 9 ) cos ( 4 π 9 ) ) − i ( − 3 cos ( π 9 ) 2 − sin ( π 9 ) 2 ) ) \left(- \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) - \left(- 2 \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} - 2 \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} + \cos^{2}{\left(\frac{\pi}{9} \right)} - i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) - i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) - i \left(- \frac{\sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2}\right) - i \sin{\left(\frac{\pi}{9} \right)} - i \left(- \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}\right) - i \left(- \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}\right) - i \left(- \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sin{\left(\frac{\pi}{9} \right)}}{2}\right)\right) ( − cos 2 ( 9 π ) + sin 2 ( 9 π ) − 2 i sin ( 9 π ) cos ( 9 π ) ) − ( − 2 cos ( 9 π ) cos ( 9 2 π ) − 2 cos ( 9 π ) cos ( 9 4 π ) + sin 2 ( 9 π ) + cos 2 ( 9 π ) − i ( sin ( 9 π ) cos ( 9 4 π ) + sin ( 9 4 π ) cos ( 9 π ) ) − i ( sin ( 9 π ) cos ( 9 2 π ) + sin ( 9 2 π ) cos ( 9 π ) ) − i ( − 2 sin ( 9 π ) + 2 3 cos ( 9 π ) ) − i sin ( 9 π ) − i ( − sin ( 9 2 π ) cos ( 9 π ) + sin ( 9 π ) cos ( 9 2 π ) ) − i ( − sin ( 9 4 π ) cos ( 9 π ) + sin ( 9 π ) cos ( 9 4 π ) ) − i ( − 2 3 cos ( 9 π ) − 2 sin ( 9 π ) ) ) / /pi\ ___ /pi\\ / /pi\ ___ /pi\\
| sin|--| \/ 3 *cos|--|| | sin|--| \/ 3 *cos|--||
2/pi\ | \9 / \9 /| | \9 / \9 /| / /pi\ /2*pi\ /2*pi\ /pi\\ / /pi\ /4*pi\ /4*pi\ /pi\\ / /2*pi\ /pi\ /pi\ /2*pi\\ / /4*pi\ /pi\ /pi\ /4*pi\\ /pi\ /pi\ /2*pi\ /pi\ /4*pi\ /pi\ /pi\
- 2*cos |--| + I*|- ------- + -------------| + I*|- ------- - -------------| + I*|cos|--|*sin|----| + cos|----|*sin|--|| + I*|cos|--|*sin|----| + cos|----|*sin|--|| + I*|cos|----|*sin|--| - cos|--|*sin|----|| + I*|cos|----|*sin|--| - cos|--|*sin|----|| + I*sin|--| + 2*cos|--|*cos|----| + 2*cos|--|*cos|----| - 2*I*cos|--|*sin|--|
\9 / \ 2 2 / \ 2 2 / \ \9 / \ 9 / \ 9 / \9 // \ \9 / \ 9 / \ 9 / \9 // \ \ 9 / \9 / \9 / \ 9 // \ \ 9 / \9 / \9 / \ 9 // \9 / \9 / \ 9 / \9 / \ 9 / \9 / \9 / − 2 cos 2 ( π 9 ) + 2 cos ( π 9 ) cos ( 4 π 9 ) + 2 cos ( π 9 ) cos ( 2 π 9 ) + i ( − 3 cos ( π 9 ) 2 − sin ( π 9 ) 2 ) + i ( − sin ( 4 π 9 ) cos ( π 9 ) + sin ( π 9 ) cos ( 4 π 9 ) ) − 2 i sin ( π 9 ) cos ( π 9 ) + i ( − sin ( 2 π 9 ) cos ( π 9 ) + sin ( π 9 ) cos ( 2 π 9 ) ) + i sin ( π 9 ) + i ( − sin ( π 9 ) 2 + 3 cos ( π 9 ) 2 ) + i ( sin ( π 9 ) cos ( 2 π 9 ) + sin ( 2 π 9 ) cos ( π 9 ) ) + i ( sin ( π 9 ) cos ( 4 π 9 ) + sin ( 4 π 9 ) cos ( π 9 ) ) - 2 \cos^{2}{\left(\frac{\pi}{9} \right)} + 2 \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + 2 \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(- \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sin{\left(\frac{\pi}{9} \right)}}{2}\right) + i \left(- \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}\right) - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + i \left(- \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}\right) + i \sin{\left(\frac{\pi}{9} \right)} + i \left(- \frac{\sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2}\right) + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) − 2 cos 2 ( 9 π ) + 2 cos ( 9 π ) cos ( 9 4 π ) + 2 cos ( 9 π ) cos ( 9 2 π ) + i ( − 2 3 cos ( 9 π ) − 2 sin ( 9 π ) ) + i ( − sin ( 9 4 π ) cos ( 9 π ) + sin ( 9 π ) cos ( 9 4 π ) ) − 2 i sin ( 9 π ) cos ( 9 π ) + i ( − sin ( 9 2 π ) cos ( 9 π ) + sin ( 9 π ) cos ( 9 2 π ) ) + i sin ( 9 π ) + i ( − 2 sin ( 9 π ) + 2 3 cos ( 9 π ) ) + i ( sin ( 9 π ) cos ( 9 2 π ) + sin ( 9 2 π ) cos ( 9 π ) ) + i ( sin ( 9 π ) cos ( 9 4 π ) + sin ( 9 4 π ) cos ( 9 π ) ) / /pi\ / /pi\ ___ /pi\\ ___ /pi\\ / /pi\ / /pi\ ___ /pi\\ ___ /pi\\
| cos|--| | sin|--| \/ 3 *cos|--|| \/ 3 *sin|--|| | cos|--| | sin|--| \/ 3 *cos|--|| \/ 3 *sin|--||
/ 2/pi\ 2/pi\\ / / /pi\ /2*pi\ /2*pi\ /pi\\ /pi\ /2*pi\ /pi\ /2*pi\\ / / /2*pi\ /pi\ /pi\ /2*pi\\ /pi\ /2*pi\ /pi\ /2*pi\\ / / /pi\ /4*pi\ /4*pi\ /pi\\ /pi\ /4*pi\ /pi\ /4*pi\\ / / /4*pi\ /pi\ /pi\ /4*pi\\ /pi\ /4*pi\ /pi\ /4*pi\\ | \9 / | \9 / \9 /| \9 /| | \9 / | \9 / \9 /| \9 /| / /pi\ /pi\\ / 2/pi\ 2/pi\ /pi\ /pi\\
1*|- cos |--| - sin |--||*|I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----||*|I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----||*|I*|cos|--|*sin|----| + cos|----|*sin|--|| + cos|--|*cos|----| - sin|--|*sin|----||*|I*|cos|----|*sin|--| - cos|--|*sin|----|| + cos|--|*cos|----| + sin|--|*sin|----||*|- ------- + I*|- ------- + -------------| - -------------|*|- ------- + I*|- ------- - -------------| + -------------|*|I*sin|--| + cos|--||*|sin |--| - cos |--| - 2*I*cos|--|*sin|--||
\ \9 / \9 // \ \ \9 / \ 9 / \ 9 / \9 // \9 / \ 9 / \9 / \ 9 // \ \ \ 9 / \9 / \9 / \ 9 // \9 / \ 9 / \9 / \ 9 // \ \ \9 / \ 9 / \ 9 / \9 // \9 / \ 9 / \9 / \ 9 // \ \ \ 9 / \9 / \9 / \ 9 // \9 / \ 9 / \9 / \ 9 // \ 2 \ 2 2 / 2 / \ 2 \ 2 2 / 2 / \ \9 / \9 // \ \9 / \9 / \9 / \9 // 1 ( − cos 2 ( π 9 ) − sin 2 ( π 9 ) ) ( − sin ( π 9 ) sin ( 2 π 9 ) + cos ( π 9 ) cos ( 2 π 9 ) + i ( sin ( π 9 ) cos ( 2 π 9 ) + sin ( 2 π 9 ) cos ( π 9 ) ) ) ( sin ( π 9 ) sin ( 2 π 9 ) + cos ( π 9 ) cos ( 2 π 9 ) + i ( − sin ( 2 π 9 ) cos ( π 9 ) + sin ( π 9 ) cos ( 2 π 9 ) ) ) ( − sin ( π 9 ) sin ( 4 π 9 ) + cos ( π 9 ) cos ( 4 π 9 ) + i ( sin ( π 9 ) cos ( 4 π 9 ) + sin ( 4 π 9 ) cos ( π 9 ) ) ) ( cos ( π 9 ) cos ( 4 π 9 ) + sin ( π 9 ) sin ( 4 π 9 ) + i ( − sin ( 4 π 9 ) cos ( π 9 ) + sin ( π 9 ) cos ( 4 π 9 ) ) ) ( − cos ( π 9 ) 2 − 3 sin ( π 9 ) 2 + i ( − sin ( π 9 ) 2 + 3 cos ( π 9 ) 2 ) ) ( − cos ( π 9 ) 2 + 3 sin ( π 9 ) 2 + i ( − 3 cos ( π 9 ) 2 − sin ( π 9 ) 2 ) ) ( cos ( π 9 ) + i sin ( π 9 ) ) ( − cos 2 ( π 9 ) + sin 2 ( π 9 ) − 2 i sin ( π 9 ) cos ( π 9 ) ) 1 \left(- \cos^{2}{\left(\frac{\pi}{9} \right)} - \sin^{2}{\left(\frac{\pi}{9} \right)}\right) \left(- \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)\right) \left(\sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{2 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)} + i \left(- \sin{\left(\frac{2 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{2 \pi}{9} \right)}\right)\right) \left(- \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + \cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + i \left(\sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)\right) \left(\cos{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \sin{\left(\frac{4 \pi}{9} \right)} + i \left(- \sin{\left(\frac{4 \pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)} + \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{4 \pi}{9} \right)}\right)\right) \left(- \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} + i \left(- \frac{\sin{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2}\right)\right) \left(- \frac{\cos{\left(\frac{\pi}{9} \right)}}{2} + \frac{\sqrt{3} \sin{\left(\frac{\pi}{9} \right)}}{2} + i \left(- \frac{\sqrt{3} \cos{\left(\frac{\pi}{9} \right)}}{2} - \frac{\sin{\left(\frac{\pi}{9} \right)}}{2}\right)\right) \left(\cos{\left(\frac{\pi}{9} \right)} + i \sin{\left(\frac{\pi}{9} \right)}\right) \left(- \cos^{2}{\left(\frac{\pi}{9} \right)} + \sin^{2}{\left(\frac{\pi}{9} \right)} - 2 i \sin{\left(\frac{\pi}{9} \right)} \cos{\left(\frac{\pi}{9} \right)}\right) 1 ( − cos 2 ( 9 π ) − sin 2 ( 9 π ) ) ( − sin ( 9 π ) sin ( 9 2 π ) + cos ( 9 π ) cos ( 9 2 π ) + i ( sin ( 9 π ) cos ( 9 2 π ) + sin ( 9 2 π ) cos ( 9 π ) ) ) ( sin ( 9 π ) sin ( 9 2 π ) + cos ( 9 π ) cos ( 9 2 π ) + i ( − sin ( 9 2 π ) cos ( 9 π ) + sin ( 9 π ) cos ( 9 2 π ) ) ) ( − sin ( 9 π ) sin ( 9 4 π ) + cos ( 9 π ) cos ( 9 4 π ) + i ( sin ( 9 π ) cos ( 9 4 π ) + sin ( 9 4 π ) cos ( 9 π ) ) ) ( cos ( 9 π ) cos ( 9 4 π ) + sin ( 9 π ) sin ( 9 4 π ) + i ( − sin ( 9 4 π ) cos ( 9 π ) + sin ( 9 π ) cos ( 9 4 π ) ) ) ( − 2 cos ( 9 π ) − 2 3 sin ( 9 π ) + i ( − 2 sin ( 9 π ) + 2 3 cos ( 9 π ) ) ) ( − 2 cos ( 9 π ) + 2 3 sin ( 9 π ) + i ( − 2 3 cos ( 9 π ) − 2 sin ( 9 π ) ) ) ( cos ( 9 π ) + i sin ( 9 π ) ) ( − cos 2 ( 9 π ) + sin 2 ( 9 π ) − 2 i sin ( 9 π ) cos ( 9 π ) ) / / ___ /pi\ /pi\ /pi\\\ 2*pi*I
| I*|- \/ 3 + 2*cos|--| + 4*cos|--|*cos|--||| ------
/ ___\ / / ___ /pi\ /pi\ /pi\\\ | /pi\ \ \18/ \9 / \18//| / /pi\ /pi\\ / /2*pi\ /5*pi\\ 9
\1 + I*\/ 3 /*|2 + I*|- \/ 3 + 2*cos|--| - 4*cos|--|*cos|--|||*|- sin|--| + -------------------------------------------|*|I*cos|--| + sin|--||*|- I*sin|----| + sin|----||*e
\ \ \18/ \9 / \18/// \ \18/ 4 / \ \18/ \18// \ \ 9 / \ 18 //
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
8 ( 1 + 3 i ) ( 2 + i ( − 4 cos ( π 18 ) cos ( π 9 ) − 3 + 2 cos ( π 18 ) ) ) ( − sin ( π 18 ) + i ( − 3 + 2 cos ( π 18 ) + 4 cos ( π 18 ) cos ( π 9 ) ) 4 ) ( sin ( π 18 ) + i cos ( π 18 ) ) ( sin ( 5 π 18 ) − i sin ( 2 π 9 ) ) e 2 i π 9 8 \frac{\left(1 + \sqrt{3} i\right) \left(2 + i \left(- 4 \cos{\left(\frac{\pi}{18} \right)} \cos{\left(\frac{\pi}{9} \right)} - \sqrt{3} + 2 \cos{\left(\frac{\pi}{18} \right)}\right)\right) \left(- \sin{\left(\frac{\pi}{18} \right)} + \frac{i \left(- \sqrt{3} + 2 \cos{\left(\frac{\pi}{18} \right)} + 4 \cos{\left(\frac{\pi}{18} \right)} \cos{\left(\frac{\pi}{9} \right)}\right)}{4}\right) \left(\sin{\left(\frac{\pi}{18} \right)} + i \cos{\left(\frac{\pi}{18} \right)}\right) \left(\sin{\left(\frac{5 \pi}{18} \right)} - i \sin{\left(\frac{2 \pi}{9} \right)}\right) e^{\frac{2 i \pi}{9}}}{8} 8 ( 1 + 3 i ) ( 2 + i ( − 4 cos ( 18 π ) cos ( 9 π ) − 3 + 2 cos ( 18 π ) ) ) ( − sin ( 18 π ) + 4 i ( − 3 + 2 c o s ( 18 π ) + 4 c o s ( 18 π ) c o s ( 9 π ) ) ) ( sin ( 18 π ) + i cos ( 18 π ) ) ( sin ( 18 5 π ) − i sin ( 9 2 π ) ) e 9 2 iπ x1 = -0.17364817766693 - 0.984807753012208*i x2 = 0.939692620785908 - 0.342020143325669*i x3 = 0.5 - 0.866025403784439*i x4 = -0.766044443118978 - 0.642787609686539*i x6 = 0.5 + 0.866025403784439*i x7 = -0.766044443118978 + 0.642787609686539*i x8 = -0.17364817766693 + 0.984807753012208*i x9 = 0.939692620785908 + 0.342020143325669*i